Answer is 1 molecule of S
Answer:
h'=0.25m/s
Explanation:
In order to solve this problem, we need to start by drawing a diagram of the given situation. (See attached image).
So, the problem talks about an inverted circular cone with a given height and radius. The problem also tells us that water is being pumped into the tank at a rate of . As you may see, the problem is talking about a rate of volume over time. So we need to relate the volume, with the height of the cone with its radius. This relation is found on the volume of a cone formula:
notie the volume formula has two unknowns or variables, so we need to relate the radius with the height with an equation we can use to rewrite our volume formula in terms of either the radius or the height. Since in this case the problem wants us to find the rate of change over time of the height of the gasoline tank, we will need to rewrite our formula in terms of the height h.
If we take a look at a cross section of the cone, we can see that we can use similar triangles to find the equation we are looking for. When using similar triangles we get:
When solving for r, we get:
so we can substitute this into our volume of a cone formula:
which simplifies to:
So now we can proceed and find the partial derivative over time of each of the sides of the equation, so we get:
Which simplifies to:
So now I can solve the equation for dh/dt (the rate of height over time, the velocity at which height is increasing)
So we get:
Now we can substitute the provided values into our equation. So we get:
so:
Answer:
The work is -67.76 J
Explanation:
The law of conservation of energy is considered one of one of the fundamental laws of physics and states that the total energy of an isolated system remains constant. except when it is transformed into other types of energy.
This is summed up in the principle that energy can neither be created nor destroyed in the universe, only transformed into other forms of energy.
In this case you must calculate the loss of kinetic energy. This loss is actually the work done against the resistive force in the air. Friction is the only force other than gravity that acts on the ball.
So, the loss of kinetic energy is
You know:
- mass=m=0.22 kg
- Initial velocity of the ball:
Final velocity of the ball:
Replacing:
= -67.76 J
Friction work is always negative because friction is always against displacement.
<u><em>The work is -67.76 J</em></u>
He can throw the hammer in the direction opposite to the direction he wants to travel in. The hammer will exert an equal and opposite force on him, as per Newton's third law, and this will help him move towards the space station.
The answers is an electrical force.
Under normal conditions, atoms interact with each other via electrons that are furthest away from the nucleus. These electrons from the what is called the outer shell of the atom, electrons from the outer shell that can participate in chemical reactions are called valence electrons.