Answer:
75.645 J
Explanation:
The kinetic energy is related to the mass and velocity by the formula ...
KE = 1/2mv²
For the given mass of 0.045 kg, and velocity of 41 m/s, the kinetic energy is ...
KE = 1/2(0.045 kg)(41 m/s)² = 75.645 J
__
The unit of energy, joule, is a derived unit equal to 1 kg·m²/s².
The kinetic energy of the electron is

where

is the mass of the electron and v its speed. Since we know the value of the kinetic energy,

, we can find the value of the speed v:
Assuming that reaching a height 0 doesn’t stop the ball, and that it accelerates at 9.8 m/s^2, the ball would be traveling at 0.5 + 0.7*9.8 = 7.36 m/s downwards.
Answer:
Δx=(v+v0/2)t
Explanation:
We can figure out which kinematic formula to use by choosing the formula that includes the known variables, plus the target unknown.
In this problem, the target unknown is the initial velocity v_0v
0
v, start subscript, 0, end subscript of the roller coaster.
<span>The answer is -0.8 m/s. We know acceleration is the average of final minus initial velocity over time (a = (vf-v0)/t). We also know that Force is equal to Mass times Acceleration (F = ma). Using our force equation, we know that the acceleration we get is negative 8.8 (-8.8). The force is acting in the opposite direction of the rugby player, hence the negative sign. From there, plug in that number for a in the velocity equation, and solve for vf, as v0 and t are known. We get 0.8 m/s in the opposite direction that the player was running.</span>