Answer:
<em>a. 4.21 moles</em>
<em>b. 478.6 m/s</em>
<em>c. 1.5 times the root mean square velocity of the nitrogen gas outside the tank</em>
Explanation:
Volume of container = 100.0 L
Temperature = 293 K
pressure = 1 atm = 1.01325 bar
number of moles n = ?
using the gas equation PV = nRT
n = PV/RT
R = 0.08206 L-atm-

Therefore,
n = (1.01325 x 100)/(0.08206 x 293)
n = 101.325/24.04 = <em>4.21 moles</em>
The equation for root mean square velocity is
Vrms = 
R = 8.314 J/mol-K
where M is the molar mass of oxygen gas = 31.9 g/mol = 0.0319 kg/mol
Vrms =
= <em>478.6 m/s</em>
<em>For Nitrogen in thermal equilibrium with the oxygen, the root mean square velocity of the nitrogen will be proportional to the root mean square velocity of the oxygen by the relationship</em>
= 
where
Voxy = root mean square velocity of oxygen = 478.6 m/s
Vnit = root mean square velocity of nitrogen = ?
Moxy = Molar mass of oxygen = 31.9 g/mol
Mnit = Molar mass of nitrogen = 14.00 g/mol
= 
= 0.66
Vnit = 0.66 x 478.6 = <em>315.876 m/s</em>
<em>the root mean square velocity of the oxygen gas is </em>
<em>478.6/315.876 = 1.5 times the root mean square velocity of the nitrogen gas outside the tank</em>
While ionic bonds join metals to nonmetals, and covalent bonds join nonmetals to nonmetals, metallic bonds are responsible for the bondingbetween metal atoms. In metallic bonds, the valence electrons from the s and p orbitals of the interacting metal atoms delocalize.
I hope that this answer helps you out
That is true Step by step:
Answer:
1.97×10⁻²¹ J
Explanation:
Use ideal gas law to find temperature.
PV = nRT
(9 atm) (9 L) = (83.3 mol) (0.0821 L·atm/mol/K) T
T = 11.9 K
The average kinetic energy per atom is:
KE = 3/2 kT
KE = 3/2 (1.38×10⁻²³ J/K) (11.9 K)
KE = 2.46×10⁻²² J
For a mass of 5.34×10⁻²⁶ kg, the kinetic energy is:
KE = (5.34×10⁻²⁶ kg) (1 mol / 0.004 kg) (6.02×10²³ atom/mol) (2.46×10⁻²² J)
KE = 1.97×10⁻²¹ J
The acceleration of one of those bugs is equal to 305mi/s.
<h3>Acceleration calculation</h3>
To calculate the insect's acceleration, the action and reaction force of the impact must be considered.
As the insect will hit the helmet, the force it hits is the same force it receives, so we can make the following expression:


<em>Speed has been converted to miles per second</em>

So, the acceleration of one of those bugs is equal to 305mi/s.
Learn more about acceleration calculation: brainly.com/question/390784