Answer:
0.665
Explanation:
I did the work. Just plug everything in from the formula. Look at the lesson manual.
Answer:
Work done = 13605.44
Explanation:
Data provided in the question:
For elongation of 2.1 cm (0.021 m) work done by the spring is 3.0 J
The relation between Energy (U) and the elongation (s) is given as:
U =
................(1)
where,
k is the spring constant
on substituting the valeus in the above equation, we get
3.0 = 
or
k = 13605.44 N/m
now
for the elongation x = 2.1 + 4.1 = 6.2 cm = 0.062 m
using the equation 1, we have
U = 
or
U = 26.149 J
Also,
Work done = change in energy
or
W = 26.149 - 3.0 = 23.149 J
"Celestial" = anything to do with the sky
("Cielo" ..... Spanish for "sky"
"Ceiling" ... that thing up over your head
"Caelum" .. Latin for "heaven")
"Terrestrial" = anything to do with the Earth
("Terra" ... Latin for "Earth")
Answer:
vₐ = v_c
Explanation:
To calculate the escape velocity let's use the conservation of energy
starting point. On the surface of the planet
Em₀ = K + U = ½ m v_c² - G Mm / R
final point. At a very distant point
Em_f = U = - G Mm / R₂
energy is conserved
Em₀ = Em_f
½ m v_c² - G Mm / R = - G Mm / R₂
v_c² = 2 G M (1 /R - 1 /R₂)
if we consider the speed so that it reaches an infinite position R₂ = ∞
v_c =
now indicates that the mass and radius of the planet changes slightly
M ’= M + ΔM = M (
)
R ’= R + ΔR = R (
)
we substitute
vₐ =
let's use a serial expansion
√(1 ±x) = 1 ± ½ x +…
we substitute
vₐ = v_ c (
)
we make the product and keep the terms linear
vₐ = v_c