For this problem, we use the formula for sensible heat which is written below:
Q= mCpΔT
where Q is the energy
Cp is the specific heat capacity
ΔT is the temperature difference
Q = (55.5 g)(<span>0.214 cal/g</span>·°C)(48.6°C- 23°C)
<em>Q = 304.05 cal</em>
Answer:
See below
Explanation:
It is neither, at least not at room temperature.
Citric acid exists as a power at room temperature, but can be crystallized from cold water. This can be considered it's " solid state, " but as I mentioned before this acid is a powder. Take a look at the attachment below. This is a citric acid present as a crystal;
Answer:
covalent bonds
Explanation:
ionic transfer of e^- ions formed (charges)
ionic=non-metal+ metal
ex: F+Ca
covalent sharing e^- no true charges
covalent= non-metal+ non-metal
ex: F+P
( my notes)
The Arrhenius definition of acid-base reactions, which was devised by Svante Arrhenius, is a development of the hydrogen theory of acids. ... An Arrhenius base is a substance that dissociates in water to form hydroxide (OH -) ions. In other words, a base increases the concentration of OH - ions in an aqueous solution.