Chromium is a metal in nature. So when one chromium is
bonded to another chromium, there is a weak intermolecular forces which helds
them together which we call as “metallic bonding”.
Metallic bonding is the intermolecular force of attraction which
exist between valence electrons and the metal atoms. It is considered as the
sharing of various detached electrons between many positive ions, whereby the
electrons serve as a "glue" which gives the substance a definite
structure.
Answer is: the combined ionic bond strength of CrCl₂ and intermolecular forces between water molecules.
When chromium chloride (CrCl₂) is dissolved in water, the temperature of the water increases, heat of the solution is endothermic.
Dissociation of chromium chloride in water: CrCl₂(aq) → Cr²⁺(aq) + 2Cl⁻(aq).
Energy (the lattice energy) is required to pull apart the oppositely charged ions in chromium chloride.
The heat of hydration is liberated energy when the separated ions (in this example chromium cations and chlorine anions) attract polar water molecules.
Because the lattice energy is higher than the heat of the hydration (endothermic reaction), we can conclude that bonds between ions are strong (the electrostatic attraction between oppositely charged ions).
It changes the rate of growth that cells usually undergo.
The inner diameter for a steel stack that exhausts 1,200 m3/min of gases at 1 atm and 400 k is 1.45 m
<h3>What is Stack Height ?</h3>
Stack height means the distance from the ground-level elevation at the base of the stack to the crown of the stack.
If a stack arises from a building or other structure, the ground-level elevation of that building or structure will be used as the base elevation of the stack.
Given is a steel stack that exhausts 1,200 cu.m/min of gases
P= 1 atm and
T= 400 K
maximum expected wind speed at stack height of 12 m/s
The formula for the diameter of chimney

Q =1200 cu.m/min
= 1200 * 0.0166 = 19.92 cu.m/sec
Velocity = 12m/s

d= 1.45 m
Therefore The inner diameter for a steel stack that exhausts 1,200 m3/min of gases at 1 atm and 400 k is 1.45 m.
To know more about Stack Height
brainly.com/question/24625453
#SPJ4
Answer:
Option C = same period.
Explanation:
All these elements belongs to second period of periodic table. This period consist of eight elements lithium, beryllium, boron, carbon, nitrogen, oxygen, fluorine and neon.
Electronic configuration of lithium:
Li₃ = [He] 2s¹
Electronic configuration of beryllium:
Be₄ = [He] 2s²
Electronic configuration of boron:
B₅ = [He] 2s² 2p¹
Electronic configuration of carbon:
C₆ = [He] 2s² 2p²
Electronic configuration of nitrogen:
N₇ = [He] 2s² 2p³
Electronic configuration of oxygen:
O₈ = [He] 2s² 2p⁴
Electronic configuration of fluorine:
F₉ = [He] 2s² 2p⁵
Electronic configuration of neon:
Ne₁₀ = [He] 2s² 2p⁶
All these elements present in same period having same electronic shell.
However their families, valance electrons and group are different. Boron have three valance electrons and belongs to group 3A. Carbon belongs to group 4A and have 4 valance electrons. Nitrogen belongs to group 5A and have five valance electrons. Oxygen belongs to group 6A and have six valance electrons. Fluorine belongs to group 7A and have seven valance electrons.