Answer:
y = -2x - 5
Step-by-step explanation:
y = -2x + b
- To find the y-intercept, plug the values of the variables.
5 = -2(-5) + b
5 = 10 + b
- Subtract 10 from both sides.
-5 = b
Answer:
ŷ = 739.49X + 4876.43
y = 6755.98 - 388.24x + 125.30x²
y = 5428.98(1.09)^x
B.)
Linear:
ŷ = 739.49(9) + 4876.43
y = 11531.8
Year 2010 ; x = 10
y = 739.49(10) + 4876.43
y = 12271.3
Year 2011 ; x = 11
y = 739.49(11) + 4876.43
y = 13010.8
Quadratic :
Year 2009 ; x = 9
y = 6755.98 - 388.24(9) + 125.30(9^2)
y = 13411.1
Year 2010 ; x = 10
y = 6755.98 - 388.24(10) + 125.30(10^2)
y = 15403.6
Year 2011 ; x = 11
y = 6755.98 - 388.24(11) + 125.30(11^2)
y = 17646.6
Exponential:
Year 2009 ; x = 9
y = 5428.98(1.09)^9
y = 11791.2
Year 2010 ; x = 10
y = 5428.98(1.09)^10
y = 12852.4
Year 2011 ; x = 11
y = 5428.98(1.09)^11
y = 14009.1
Step-by-step explanation:
X :
1
2
3
4
5
6
7
8
Y:
6231
6574
7237
7211
7701
8581
10302
11796
Using the online linear regression calculator :
The linear trend :
ŷ = 739.49X + 4876.43
Where x = year
With 2006 representing 1 ; and so on
Slope = m = 739.49
Intercept (c) = 4876.43
y = predicted variable
The quadratic model:
General form:
y = A + Bx + Cx²
y = 6755.98 - 388.24x + 125.30x²
The exponential model:
y = AB^x
y = 5428.98(1.09)^x
B.) Next three years :
Year 2009 ; x = 9
Year 2010 ; x = 10
Year 2011 ; x = 11
Linear:
ŷ = 739.49(9) + 4876.43
y = 11531.8
Year 2010 ; x = 10
y = 739.49(10) + 4876.43
y = 12271.3
Year 2011 ; x = 11
y = 739.49(11) + 4876.43
y = 13010.8
Quadratic :
Year 2009 ; x = 9
y = 6755.98 - 388.24(9) + 125.30(9^2)
y = 13411.1
Year 2010 ; x = 10
y = 6755.98 - 388.24(10) + 125.30(10^2)
y = 15403.6
Year 2011 ; x = 11
y = 6755.98 - 388.24(11) + 125.30(11^2)
y = 17646.6
Exponential:
Year 2009 ; x = 9
y = 5428.98(1.09)^9
y = 11791.2
Year 2010 ; x = 10
y = 5428.98(1.09)^10
y = 12852.4
Year 2011 ; x = 11
y = 5428.98(1.09)^11
y = 14009.1
Answer:
8/35
Step-by-step explanation:
1 1/4 = 5/4
3 1/2 = 7/2
5/4 × 7/2
Find the reciprocal. (flip numerator and denomimator)
4/5 × 2/7 = 8/35
The function is (-x+3)/ (3x-2) and we get f(1)=1 and differentiation is f'(x)=-7/ (9x²- 12x+4).
Given that,
The function is (-x+3)/ (3x-2)
We have to find f(1) and f'(x).
Take the function expression
f(x)= (-x+3)/ (3x-2)
Taking x as 1 value
f(1)= (-1+3)/(3(1)-2)
f(1)=2/1
f(1)=1
Now, to get f'(x)
With regard to x, we must differentiate.
f(x) is in u/v
We know
u/v=(vu'-uv')/ v² (formula)
f'(x)= ((3x-2)(-1)- (-x+3)(3))/ (3x-2)²
f'(x)= ((-3x+2)-(-3x+9))/ 9x²- 12x+4
f'(x)=(-3x+2+3x-9)/ 9x²- 12x+4
f'(x)=2-9/ (9x²- 12x+4)
f'(x)=-7/ (9x²- 12x+4)
Therefore, The function is (-x+3)/ (3x-2) and we get f(1)=1 and differentiation is f'(x)=-7/ (9x²- 12x+4).
To learn more about function visit: brainly.com/question/14002287
#SPJ1
i'm 75% sure the answer is C hope this helps