Answer:
Answers are in parentheses.
In the Bohr model of the atom, the electrons move in fixed, (circular) paths around a dense positively-charged nucleus. On the other hand, the quantum mechanical model shows the probability of finding an electron as a (cloud) of negative charge.
Answer:
The odor of a substance is a physical property. That would be your answer.
Explanation:
Physical Properties
Physical properties are properties that can be measured or observed without changing the chemical nature of the substance. Some examples of physical properties are:
color (intensive)
density (intensive)
volume (extensive)
mass (extensive)
boiling point (intensive): the temperature at which a substance boils
melting point (intensive): the temperature at which a substance melts
Chemical Properties
Remember, the definition of a chemical property is that measuring that property must lead to a change in the substance’s chemical structure. Here are several examples of chemical properties:
Heat of combustion is the energy released when a compound undergoes complete combustion (burning) with oxygen. The symbol for the heat of combustion is ΔHc.
Chemical stability refers to whether a compound will react with water or air (chemically stable substances will not react). Hydrolysis and oxidation are two such reactions and are both chemical changes.
Flammability refers to whether a compound will burn when exposed to flame. Again, burning is a chemical reaction—commonly a high-temperature reaction in the presence of oxygen.
The preferred oxidation state is the lowest-energy oxidation state that a metal will undergo reactions in order to achieve (if another element is present to accept or donate electrons).
15 because atomic no. is the number of protons
Answer:
2.64 × 10⁶ g
Explanation:
We can find the mass of air using the ideal gas equation.

where,
P is the pressure (P = 1.00 atm)
V is the volume (V = 2.95 × 10⁶ L)
n is the number of moles
R is the ideal gas constant (0.08206atm.L/mol.K)
T is the absolute temperature (121°C + 273 = 394 K)
m is the mass
M is the molar mass (28.09 g/mol)
