1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
agasfer [191]
3 years ago
15

I need to know the answers to the 3 questions in there

Mathematics
1 answer:
lina2011 [118]3 years ago
3 0
What are the three question?
You might be interested in
A corporate bond has a coupon rate of 5.5 percent, a $1,000 face value, and matures three years from today. The corporation is i
melomori [17]

Answer:

= \frac{\frac{75}{100}\times 1000 + \frac{25}{100} \times \frac{60}{100}\times 1000  }{(1+\frac{15}{100})^3 }

=\frac{0.75\times 1000 + 0.25\times 0.60 \times 1000}{(1+0.15)^3}

=\frac{750+0.25\times 0.60\times 1000}{1.15^3} \\\\=\frac{750+150}{1.520875} =\frac{900}{1.520875} \\\\=591.76

Step-by-step explanation:

= (probability of entire face value paid*face value+probability of entire face value not paid*percent of face value paid*face value)/(1+discount rate)^years to maturity

probability of entire face value paid = 75%

face value = 1000

probability of entire face value not paid = 25%

percent of face value paid= 60%

discount rate = 15%

years to maturity  = 3

= \frac{\frac{75}{100}\times 1000 + \frac{25}{100} \times \frac{60}{100}\times 1000  }{(1+\frac{15}{100})^3 }

=\frac{0.75\times 1000 + 0.25\times 0.60 \times 1000}{(1+0.15)^3}

=\frac{750+0.25\times 0.60\times 1000}{1.15^3} \\\\=\frac{750+150}{1.520875} =\frac{900}{1.520875} \\\\=591.76

6 0
3 years ago
Which expression is equal to 1/8000 written in scientific notation?
Shkiper50 [21]
Since 1/8000 is 0.000125, we can move the decimal 4 terms to the right.

So that will be 1.25 • 10^-4
Choice B
5 0
3 years ago
for a barbecue mrs.charles bought 12.5 pounds of hamburger meat for $2.89 per pound how much did the hamburger meat cost ? PLEAS
Assoli18 [71]
 12.500
<u>x 2.890
</u> 36.125 (rounded up is 36.13)

The hamburger meat costed $36.13.
8 0
3 years ago
Read 2 more answers
What is the total surface area of rectangular prism?
algol13

Answer:

162 [m²].

Step-by-step explanation:

required surface is:

A=(3*7+6*7+3*6)*2=162 [m²].

4 0
3 years ago
Read 2 more answers
Use this list of Basic Taylor Series and the identity sin2θ= 1 2 (1−cos(2θ)) to find the Taylor Series for f(x) = sin2(3x) based
notsponge [240]

Answer:

The Taylor series for sin^2(3 x) = - \sum_{n=1}^{\infty} \frac{-9^{n}2^{2n-1}x^{2n}}{(2n)!}, the first three non-zero terms are 9x^{2} -27x^{4}+\frac{162}{5}x^{6} and the interval of convergence is ( -\infty, \infty )

Step-by-step explanation:

<u>These are the steps to find the Taylor series for the function</u> sin^2(3 x)

  1. Use the trigonometric identity:

sin^{2}(x)=\frac{1}{2}*(1-cos(2x))\\ sin^{2}(3x)=\frac{1}{2}*(1-cos(2(3x)))\\ sin^{2}(3x)=\frac{1}{2}*(1-cos(6x))

   2. The Taylor series of cos(x)

cos(y) = \sum_{n=0}^{\infty}\frac{-1^{n}y^{2n}}{(2n)!}

Substituting y=6x we have:

cos(6x) = \sum_{n=0}^{\infty}\frac{-1^{n}6^{2n}x^{2n}}{(2n)!}

   3. Find the Taylor series for sin^2(3x)

sin^{2}(3x)=\frac{1}{2}*(1-cos(6x)) (1)

cos(6x) = \sum_{n=0}^{\infty}\frac{-1^{n}6^{2n}x^{2n}}{(2n)!} (2)

Substituting (2) in (1) we have:

\frac{1}{2} (1-\sum_{n=0}^{\infty}\frac{-1^{n}6^{2n}x^{2n}}{(2n)!})\\ \frac{1}{2}-\frac{1}{2} \sum_{n=0}^{\infty}\frac{-1^{n}6^{2n}x^{2n}}{(2n)!}

Bring the factor \frac{1}{2} inside the sum

\frac{6^{2n}}{2}=9^{n}2^{2n-1} \\ (-1^{n})(9^{n})=(-9^{n} )

\frac{1}{2}-\sum_{n=0}^{\infty}\frac{-9^{n}2^{2n-1}x^{2n}}{(2n)!}

Extract the term for n=0 from the sum:

\frac{1}{2}-\sum_{n=0}^{0}\frac{-9^{0}2^{2*0-1}x^{2*0}}{(2*0)!}-\sum_{n=1}^{\infty}\frac{-9^{n}2^{2n-1}x^{2n}}{(2n)!}\\ \frac{1}{2} -\frac{1}{2} -\sum_{n=1}^{\infty}\frac{-9^{n}2^{2n-1}x^{2n}}{(2n)!}\\ 0-\sum_{n=1}^{\infty}\frac{-9^{n}2^{2n-1}x^{2n}}{(2n)!}\\ sin^{2}(3x)=-\sum_{n=1}^{\infty}\frac{-9^{n}2^{2n-1}x^{2n}}{(2n)!}

<u>To find the first three non-zero terms you need to replace n=3 into the sum</u>

sin^{2}(3x)=\sum_{n=1}^{\infty}\frac{-9^{n}2^{2n-1}x^{2n}}{(2n)!}\\ \sum_{n=1}^{3}\frac{-9^{3}2^{2*3-1}x^{2*3}}{(2*3)!} = 9x^{2} -27x^{4}+\frac{162}{5}x^{6}

<u>To find the interval on which the series converges you need to use the Ratio Test that says</u>

For the power series centered at x=a

P(x)=C_{0}+C_{1}(x-a)+C_{2}(x-a)^{2}+...+ C_{n}(x-a)^{n}+...,

suppose that \lim_{n \to \infty} |\frac{C_{n}}{C_{n+1}}| = R.. Then

  • If R=\infty, the the series converges for all x
  • If 0 then the series converges for all |x-a|
  • If R=0, the the series converges only for x=a

So we need to evaluate this limit:

\lim_{n \to \infty} |\frac{\frac{-9^{n}2^{2n-1}x^{2n}}{(2n)!}}{\frac{-9^{n+1}2^{2*(n+1)-1}x^{2*(n+1)}}{(2*(2n+1))!}} |

Simplifying we have:

\lim_{n \to \infty} |-\frac{(n+1)(2n+1)}{18x^{2} } |

Next we need to evaluate the limit

\lim_{n \to \infty} |-\frac{(n+1)(2n+1)}{18x^{2} } |\\ \frac{1}{18x^{2} } \lim_{n \to \infty} |-(n+1)(2n+1)}|}

-(n+1)(2n+1) is negative when n -> ∞. Therefore |-(n+1)(2n+1)}|=2n^{2}+3n+1

You can use this infinity property \lim_{x \to \infty} (ax^{n}+...+bx+c) = \infty when a>0 and n is even. So

\lim_{n \to \infty} |-\frac{(n+1)(2n+1)}{18x^{2} } | \\ \frac{1}{18x^{2}} \lim_{n \to \infty} 2n^{2}+3n+1=\infty

Because this limit is ∞ the radius of converge is ∞ and the interval of converge is ( -\infty, \infty ).

6 0
3 years ago
Other questions:
  • Alaska has a land area of about 1,700,000 square kilometers Florida has a land area 1/10 the size of Alaska.what is the land are
    6·2 answers
  • I need help atleast an equation to get started please
    15·1 answer
  • rounded to the nearest 100000 the population of El Paso is 700000, rounded to the nearest 10,000, the population is 670,000, wha
    14·2 answers
  • What is the solution to the system of equations? Use the substitution method. {y=−2x+53x−4y=2
    10·1 answer
  • What is -(2 a + 2 b) + (4 a +4 b​
    13·2 answers
  • d) if A and B are symmetric, is AB symmetric? Prove or give an example where it fails to be true. e) If A and B are symmetric is
    5·1 answer
  • Triangle ABC was dilated using the rule Dy, 5/4
    8·2 answers
  • 5% of 220 = plz i have no time
    12·2 answers
  • What is the solution to the system below? <br> y = -3x - 2<br> 6x + 2y = -4
    5·1 answer
  • Someone help and please make sure it’s right
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!