Let,
f(x) = -2x+34
g(x) = (-x/3) - 10
h(x) = -|3x|
k(x) = (x-2)^2
This is a trial and error type of problem (aka "guess and check"). There are 24 combinations to try out for each problem, so it might take a while. It turns out that
g(h(k(f(15)))) = -6
f(k(g(h(8)))) = 2
So the order for part A should be: f, k, h, g
The order for part B should be: h, g, k f
note how I'm working from the right and moving left (working inside and moving out).
Here's proof of both claims
-----------------------------------------
Proof of Claim 1:
f(x) = -2x+34
f(15) = -2(15)+34
f(15) = 4
-----------------
k(x) = (x-2)^2
k(f(15)) = (f(15)-2)^2
k(f(15)) = (4-2)^2
k(f(15)) = 4
-----------------
h(x) = -|3x|
h(k(f(15))) = -|3*k(f(15))|
h(k(f(15))) = -|3*4|
h(k(f(15))) = -12
-----------------
g(x) = (-x/3) - 10
g(h(k(f(15))) ) = (-h(k(f(15))) /3) - 10
g(h(k(f(15))) ) = (-(-12) /3) - 10
g(h(k(f(15))) ) = -6
-----------------------------------------
Proof of Claim 2:
h(x) = -|3x|
h(8) = -|3*8|
h(8) = -24
---------------
g(x) = (-x/3) - 10
g(h(8)) = (-h(8)/3) - 10
g(h(8)) = (-(-24)/3) - 10
g(h(8)) = -2
---------------
k(x) = (x-2)^2
k(g(h(8))) = (g(h(8))-2)^2
k(g(h(8))) = (-2-2)^2
k(g(h(8))) = 16
---------------
f(x) = -2x+34
f(k(g(h(8))) ) = -2*(k(g(h(8))) )+34
f(k(g(h(8))) ) = -2*(16)+34
f(k(g(h(8))) ) = 2
Answer:
8 ≥ x+3 or x ≥ 12
Step-by-step explanation:
The sum of a number (additon) and 3 (x+3) is no more than (so less than or equal to eight) OR is more than 12 ( x is more than 12, x ≥ 12 )
Answer: D
80 000 > 0,00004
80 000 : 0,00004 = 2 000 000 000
2 000 000 000 = 2*10^9
There is a 68% probability that the manager chooses someone who speaks Spanish.
There are 8 people that don't know Spanish. That leaves 17 people that do speak Spanish.
25 - 8 = 17
17 out of 25 is 68%