Answer:314
Step-by-step explanation:
Well i happen to have that question and it is that he has 16 1/5 fabric and need 5 2/5 to make an elf costume. how many costumes can he make? Well so basically all you have to do is 16 1/5 divided by 5 2/5, which is: 3. The answer is 3 hope this helped!
Lower Quartile-21
Upper Quartile-52
Interquartile Range- 31
Hope this helps !!
Answer:
(a)![E[X+Y]=E[X]+E[Y]](https://tex.z-dn.net/?f=E%5BX%2BY%5D%3DE%5BX%5D%2BE%5BY%5D)
(b)
Step-by-step explanation:
Let X and Y be discrete random variables and E(X) and Var(X) are the Expected Values and Variance of X respectively.
(a)We want to show that E[X + Y ] = E[X] + E[Y ].
When we have two random variables instead of one, we consider their joint distribution function.
For a function f(X,Y) of discrete variables X and Y, we can define
![E[f(X,Y)]=\sum_{x,y}f(x,y)\cdot P(X=x, Y=y).](https://tex.z-dn.net/?f=E%5Bf%28X%2CY%29%5D%3D%5Csum_%7Bx%2Cy%7Df%28x%2Cy%29%5Ccdot%20P%28X%3Dx%2C%20Y%3Dy%29.)
Since f(X,Y)=X+Y
![E[X+Y]=\sum_{x,y}(x+y)P(X=x,Y=y)\\=\sum_{x,y}xP(X=x,Y=y)+\sum_{x,y}yP(X=x,Y=y).](https://tex.z-dn.net/?f=E%5BX%2BY%5D%3D%5Csum_%7Bx%2Cy%7D%28x%2By%29P%28X%3Dx%2CY%3Dy%29%5C%5C%3D%5Csum_%7Bx%2Cy%7DxP%28X%3Dx%2CY%3Dy%29%2B%5Csum_%7Bx%2Cy%7DyP%28X%3Dx%2CY%3Dy%29.)
Let us look at the first of these sums.
![\sum_{x,y}xP(X=x,Y=y)\\=\sum_{x}x\sum_{y}P(X=x,Y=y)\\\text{Taking Marginal distribution of x}\\=\sum_{x}xP(X=x)=E[X].](https://tex.z-dn.net/?f=%5Csum_%7Bx%2Cy%7DxP%28X%3Dx%2CY%3Dy%29%5C%5C%3D%5Csum_%7Bx%7Dx%5Csum_%7By%7DP%28X%3Dx%2CY%3Dy%29%5C%5C%5Ctext%7BTaking%20Marginal%20distribution%20of%20x%7D%5C%5C%3D%5Csum_%7Bx%7DxP%28X%3Dx%29%3DE%5BX%5D.)
Similarly,
![\sum_{x,y}yP(X=x,Y=y)\\=\sum_{y}y\sum_{x}P(X=x,Y=y)\\\text{Taking Marginal distribution of y}\\=\sum_{y}yP(Y=y)=E[Y].](https://tex.z-dn.net/?f=%5Csum_%7Bx%2Cy%7DyP%28X%3Dx%2CY%3Dy%29%5C%5C%3D%5Csum_%7By%7Dy%5Csum_%7Bx%7DP%28X%3Dx%2CY%3Dy%29%5C%5C%5Ctext%7BTaking%20Marginal%20distribution%20of%20y%7D%5C%5C%3D%5Csum_%7By%7DyP%28Y%3Dy%29%3DE%5BY%5D.)
Combining these two gives the formula:

Therefore:
![E[X+Y]=E[X]+E[Y] \text{ as required.}](https://tex.z-dn.net/?f=E%5BX%2BY%5D%3DE%5BX%5D%2BE%5BY%5D%20%5Ctext%7B%20%20as%20required.%7D)
(b)We want to show that if X and Y are independent random variables, then:

By definition of Variance, we have that:
![Var(X+Y)=E(X+Y-E[X+Y]^2)](https://tex.z-dn.net/?f=Var%28X%2BY%29%3DE%28X%2BY-E%5BX%2BY%5D%5E2%29)
![=E[(X-\mu_X +Y- \mu_Y)^2]\\=E[(X-\mu_X)^2 +(Y- \mu_Y)^2+2(X-\mu_X)(Y- \mu_Y)]\\$Since we have shown that expectation is linear$\\=E(X-\mu_X)^2 +E(Y- \mu_Y)^2+2E(X-\mu_X)(Y- \mu_Y)]\\=E[(X-E(X)]^2 +E[Y- E(Y)]^2+2Cov (X,Y)](https://tex.z-dn.net/?f=%3DE%5B%28X-%5Cmu_X%20%20%2BY-%20%5Cmu_Y%29%5E2%5D%5C%5C%3DE%5B%28X-%5Cmu_X%29%5E2%20%20%2B%28Y-%20%5Cmu_Y%29%5E2%2B2%28X-%5Cmu_X%29%28Y-%20%5Cmu_Y%29%5D%5C%5C%24Since%20we%20have%20shown%20that%20expectation%20is%20linear%24%5C%5C%3DE%28X-%5Cmu_X%29%5E2%20%20%2BE%28Y-%20%5Cmu_Y%29%5E2%2B2E%28X-%5Cmu_X%29%28Y-%20%5Cmu_Y%29%5D%5C%5C%3DE%5B%28X-E%28X%29%5D%5E2%20%20%2BE%5BY-%20E%28Y%29%5D%5E2%2B2Cov%20%28X%2CY%29)
Since X and Y are independent, Cov(X,Y)=0

Therefore as required:

Step-by-step explanation:
1)
In a right triangle longest side is hypotenuse and the remaining two sides represent the perpendicular legs.
Hence, from the given question it is obvious that 25 is hypotenuse and 20 and 15 are perpendicular legs.
Now, by Pythagorean theorem:
2)
Because all right triangles have one hypotenuse and two perpendicular legs.