Answer:
1. Molecular equation
BaCl2(aq) + 2AgNO3(aq) –> 2AgCl(s) + Ba(NO3)2 (aq)
2. Complete Ionic equation
Ba²⁺(aq) + 2Cl¯(aq) + 2Ag⁺(aq) + 2NO3¯ (aq) —> 2AgCl(s) + Ba²⁺(aq) + 2NO3¯(aq)
3. Net ionic equation
Cl¯(aq) + Ag⁺(aq) —> AgCl(s)
Explanation:
Answer:
- Absolute zero is - 459.67 °F
Explanation:
<u>1) Convert absolute zero to celsius:</u>
- 0 K = - 273.15°C ( this is per definition of the scale)
<u>2) Convert - 273.15°C to Fahrenheit:</u>
- T (°F) = T (°C) × 1.8 + 32 (this is the conversion equation=
- T (°F) = - 273.15 × 1.8 + 32 = - 459.67 °F ← answer
Answer
Na OH reacts with H Cl and forms Na Cl and H₂O
NaOH + HCl → NaCl + H₂O
Here we can see that 1 mole of NaOH reacting with 1 mole of HCl and forming 1 mole of NaCl and 1 mole of H₂O
when NaOH and HCl are added together in equal amount then they will completely neutralize each other but NaOH is hygroscopic in nature which means it can absorb water from air so it will not be weighted accurately.
hence, for neutralization we will take extra NaOH.
First write all of the compounds/atoms in either side then fill in existing values and balance
Na- 1
Br- 1
Ca- 1
Cl- 2
Na- 1
Cl- 1
Ca-1
Br-2
Balance to get
2NaBr+CaCl2=2NaCl+CaBr2
Some parts of a plant can be white because they do not contain chlorophyll.
Chlorophyll is a term to refer to a characteristic compound of most plants that has the function of:
- Bring the green color to vegetables
- Take charge of the photosynthesis process.
Some plants do not have as much chlorophyll in their systems. However, this does not affect their reproduction and growth because they have developed other feeding methods through their roots.
These plants that contain low amounts of chlorophyll have pale and white colorations because chlorophyll is what gives the plants their intense green color.
Note: This question is incomplete because options are missing. Nevertheless, I can answer it based on my prior knowledge.
Learn more in: brainly.com/question/14884020