Hello.
The answer is Gas.
In gases the partcails have more space and can move faster.
Have a nice day
The question is incomplete. The complete question is :
Hydrogen is manufactured on an industrial scale by this sequence of reactions:


The net reaction is :

Write an equation that gives the overall equilibrium constant
in terms of the equilibrium constants
and
. If you need to include any physical constants, be sure you use their standard symbols, which you'll find in the ALEKS Calculator.
Solution :

...............(1)

...................(2)

![$K=\frac{[CO_2][H_2]^4}{[CH_4][H_2O]^2}$](https://tex.z-dn.net/?f=%24K%3D%5Cfrac%7B%5BCO_2%5D%5BH_2%5D%5E4%7D%7B%5BCH_4%5D%5BH_2O%5D%5E2%7D%24)
On multiplication of equation (1) and (2), we get
![$K_1 \times K_2=\frac{[CO][H_2]^3}{[CH_4][H_2O]} \times \frac{[CO_2][H_2]}{[CO][H_2O]}$](https://tex.z-dn.net/?f=%24K_1%20%5Ctimes%20K_2%3D%5Cfrac%7B%5BCO%5D%5BH_2%5D%5E3%7D%7B%5BCH_4%5D%5BH_2O%5D%7D%20%5Ctimes%20%5Cfrac%7B%5BCO_2%5D%5BH_2%5D%7D%7B%5BCO%5D%5BH_2O%5D%7D%24)
.................(4)
Comparing equation (3) and equation (4), we get

Speed is calculated using the formula distance divided by time. For a distance of 26.2 miles, and a time of 3 hours and 40 minutes, we first convert the time to make it solely in terms of hours. 40 minutes is 2/3 of an hour, so this is a total time of 3 2/3 or 11/3 hours. If we divide 26.2 miles by 11/3 hours, we get a resulting speed of 7.14 miles/hour.