Earthquakes along the San Andreas fault in California.
<u>Explanation</u>:
- When the two plates collide with each other, earthquakes occur. The contact between them makes this earthquake possible. The contact forces are responsible for the earthquakes as there is contact between two plates.
- The gravitational force is a force that is responsible for elevated tides happening on the east coast or the Jupiter's moons to remain in orbit. But this is not a contact force as there is no contact between them
- Moreover, Without any contact, the magnetic force is a non-contact as it attracts the pins from a distance.
I believe the answer is: Protons and Neutrons
Protons weigh 1 amu while neutrons also weigh 1 amu. I’m not sure if they are talking about how many there is.
Answer:
n= | Shell | Maximum Number of Electrons
1 | 1st Shell | 2
2 | 2nd Shell | 8
3 | 3rd Shell | 18
4 | 4th Shell | 32
Explanation: cause :)
The given question is incomplete. The complete question is :
It takes 151 kJ/mol to break an iodine-iodine single bond. Calculate the maximum wavelength of light for which an iodine-iodine single bond could be broken by absorbing a single photon. Be sure your answer has the correct number of significant digits.
Answer: 793 nm
Explanation:
The relation between energy and wavelength of light is given by Planck's equation, which is:
where,
E = energy of the light = 151 kJ= 151000 J (1kJ=1000J)
N= moles = 1 =
h = Planck's constant =
c = speed of light =
= wavelength of light = ?
Putting in the values:
Thus the maximum wavelength of light for which an iodine-iodine single bond could be broken by absorbing a single photon is 793 nm