sin(<em>θ</em>) + cos(<em>θ</em>) = 1
Divide both sides by √2:
1/√2 sin(<em>θ</em>) + 1/√2 cos(<em>θ</em>) = 1/√2
We do this because sin(<em>x</em>) = cos(<em>x</em>) = 1/√2 for <em>x</em> = <em>π</em>/4, and this lets us condense the left side using either of the following angle sum identities:
sin(<em>x</em> + <em>y</em>) = sin(<em>x</em>) cos(<em>y</em>) + cos(<em>x</em>) sin(<em>y</em>)
cos(<em>x</em> - <em>y</em>) = cos(<em>x</em>) cos(<em>y</em>) - sin(<em>x</em>) sin(<em>y</em>)
Depending on which identity you choose, we get either
1/√2 sin(<em>θ</em>) + 1/√2 cos(<em>θ</em>) = sin(<em>θ</em> + <em>π</em>/4)
or
1/√2 sin(<em>θ</em>) + 1/√2 cos(<em>θ</em>) = cos(<em>θ</em> - <em>π</em>/4)
Let's stick with the first equation, so that
sin(<em>θ</em> + <em>π</em>/4) = 1/√2
<em>θ</em> + <em>π</em>/4 = <em>π</em>/4 + 2<em>nπ</em> <u>or</u> <em>θ</em> + <em>π</em>/4 = 3<em>π</em>/4 + 2<em>nπ</em>
(where <em>n</em> is any integer)
<em>θ</em> = 2<em>nπ</em> <u>or</u> <em>θ</em> = <em>π</em>/2 + 2<em>nπ</em>
<em />
We get only one solution from the second solution set in the interval 0 < <em>θ</em> < 2<em>π</em> when <em>n</em> = 0, which gives <em>θ</em> = <em>π</em>/2.
Answer: 8/17
Step-by-step explanation: The ratio for tangent is opposite/adjacent. The side opposite from Y has a length of 8, and the side next to it has a length of 15. These are the lengths of the legs of the triangle. To find the sine ratio, you need the hypotenuse.
The hypotenuse can be found using the Pythagorean theorem. 8^2=64 and 15^2=225. 225+64=289. The square root of 289 is 17. The hypotenuse has a length of 17.
The ratio for sine is opposite/hypotenuse. Take the value of the opposite from the tangent ratio (8) and the length of the hypotenuse (17) to get 8/17.
30 minutes is half of an hour so it would be 50%.
Answer:
x = 3
Step-by-step explanation:
Given
7(x + 2) - 5 = 30 ( add 5 to both sides )
7(x + 2) = 35 ( divide both sides by 7 )
x + 2 = 5 ( subtract 2 from both sides )
x = 3