D, the more liquid there is, the less the temperature will be affected
Answer:
Q = 143,921 J = 143.9 kJ.
Explanation:
Hello there!
In this case, according to the given information, it turns out possible for us to calculate the absorbed heat by considering this is a process involving sensible heat associated to the vaporization of water, which is isothermic and isobaric; and thus, the heat of vaporization of water, with a value of about 2259.36 J/g, is used as shown below:

Thus, we plug in the mass and the aforementioned heat of vaporization of water to obtain the following:

Regards!
Answer:
1.2029 J/g.°C
Explanation:
Given data:
Specific heat capacity of titanium = 0.523 J/g.°C
Specific heat capacity of 2.3 gram of titanium = ?
Solution:
Specific heat capacity:
It is the amount of heat required to raise the temperature of one gram of substance by one degree.
Formula:
Q = m.c. ΔT
Q = amount of heat absorbed or released
m = mass of given substance
c = specific heat capacity of substance
ΔT = change in temperature
1 g of titanium have 0.523 J/g.°C specific heat capacity
2.3 × 0.523 J/g.°C
1.2029 J/g.°C
To find moles in this sample, you would divide grams by molar mass of ethyl alcohol
(18.0g)/(46.07g/mol) = 0.391mol C2H6O
A solution has a pOH of 7. 1 at 10∘c. Then the pH of the solution given that kw=2. 93×10−15 at this temperature is 7.4 .
It is given that,
pOH of solution = 7.1
Kw =2.93×10^(-15)
Firstly, we will calculate the value of pKw
The expression which we used to calculate the pKw is,
pKw=-log [Kw]
Now by putting the value of Kw in this expression,
pKw =−log{2.93×10^(-15)}
pKw =15log(2.93)
pKw=14.5
Now we have to calculate the pH of the solution.
As we know that,
pH+pOH=pKw
Now put all the given values in this formula,
pH+7.1=14.5
pH=7.4
Therefore, we find the value of pH of the solution is, 7.4.
learn more about pH value:
brainly.com/question/12942138
#SPJ4