Answer:
612 K
Explanation:
From the question given above, the following data were obtained:
Initial temperature (T₁) = 306 K
Initial pressure (P₁) = 150 kPa
Final pressure (P₂) = 300 kPa
Volume = 4 L = constant
Final temperature (T₂) =?
Since the volume is constant, the final (i.e the new) temperature of the gas can be obtained as follow:
P₁ / T₁ = P₂ / T₂
150 / 306 = 300 / T₂
Cross multiply
150 × T₂ = 306 × 300
150 × T₂ = 91800
Divide both side by 150
T₂ = 91800 / 150
T₂ = 612 K
Thus, the new temperature of the gas is 612 K
Answer:
67.3 atm
Explanation:
We'll begin by converting 25 ℃ to Kelvin temperature. This can be obtained as follow:
T(K) = T(℃) + 273
T(℃) = 25 ℃
T(K) = 25 + 273
T(K) = 298 K
Finally, we shall determine the pressure. This can be obtained by using the ideal gas equation as illustrated below:
Gas constant (R) = 0.821 atm.L/Kmol
Volume (V) = 212 L
Number of mole (n) = 584 moles
Temperature (T) = 298 K
Pressure (P) =?
PV = nRT
P × 212 = 584 × 0.0821 × 298
P × 212 = 14288.0272
Divide both side by 212
P = 14288.0272 / 212
P = 67.3 atm
Thus, the pressure is 67.3 atm
The formula of aspartame is <span>C14H18N2O5.
From the periodic table:
molecular mass of hydrogen = 1 grams
molecular mass of carbon = 12 grams
molecular mass of nitrogen = 14 grams
molecular mass of oxygen = 16 grams
This means that:
molar mass of aspartame = 14(12)+18(1)+2(14)+5(16) = 294 grams
Therefore, each 294 grams of aspartame contains 5(16) = 80 grams of oxygen. To know number of grams of oxygen in 23.6 grams of aspartame, simply use cross multiplication as follows:
mass of oxygen = (23.6x80) / 294 = 6.42 grams</span>
Answer:
The mass of the solid precipitate (HgSO₄) is 27.529 g
Explanation:
I did the test
The answer is A. large differences between their boiling points