Answer: The answer is either A or C. I'm leaning more towards A.
For example, monosaccharides:
C₆H₁₂O₆
aldohexoses
ketohexoses
C₃H₆O₃
aldotrioses
ketotrioses
and many others
Answer:
c
Explanation:
because 2× is strong. hydrogen will be remove
A single molecule of hemoglobin can bind to 4 molecules of oxygen gas. However, hemoglobin has a greater affinity for carbon monoxide than oxygen. Therefore, an excess of carbon monoxide in the presence of oxygenated hemoglobin will result in the displacement of each oxygen atom for a carbon monoxide atom.
Hb(O2)4 (aq) + 4 CO(g) --> Hb(CO)4 (aq) + 4 O2(g)
With an excess of carbon monoxide, it is safe to assume that each oxygen molecule will be displaced with a carbon monoxide molecule. Therefore, if we have 4.5 moles of oxygenated hemoglobin (Hb(O2)4), all 4.5 moles of the species will release oxygen and bind to carbon monoxide.
Answer: The molality of solution is 17.6 mole/kg
Explanation:
Molality of a solution is defined as the number of moles of solute dissolved per kg of the solvent.
where,
n = moles of solute
= weight of solvent in kg
moles of acetone (solute) = 0.241
moles of water (solvent )= (1-0.241) = 0.759
mass of water (solvent )=
Now put all the given values in the formula of molality, we get
Therefore, the molality of solution is 17.6 mole/kg