Answer:
Carboxylic acids produce hydrogen bonds amongst themselves and possess lower vapor pressure. They generally possess a sour odor. When an acid and a base react with each other to produce salt and water and comprises the combination of hydrogen and hydroxide ions, the reaction is termed the neutralization reaction. Thus, when carboxylic acid reacts with base the reaction is termed neutralization.
On the other hand, esters are known for their pleasant fragrances. They do not produce hydrogen bonds amongst themselves and possess higher vapor pressure. A hydration reaction in which free hydroxide dissociates the ester bonds between the glycerol and fatty acids of a triglyceride, leading to the formation of free fatty acids and glycerol is termed saponification.
Thus, the given blanks can be filled with carboxylic acid, carboxylic acid, esters, esters, esters, and carboxylic acid.
<span>9.40x10^19 molecules.
The balanced equation for ammonia is:
N2 + 3H2 ==> 2NH3
So for every 3 moles of hydrogen gas, 2 moles of ammonia is produced. So let's calculate the molar mass of hydrogen and ammonia, starting with the respective atomic weights:
Atomic weight nitrogen = 14.0067
Atomic weight hydrogen = 1.00794
Molar mass H2 = 2 * 1.00794 = 2.01588 g/mol
Molar mass NH3 = 14.0067 + 3 * 1.00794 = 17.03052 g/mol
Moles H2 = 4.72 x 10^-4 g / 2.01588 g/mol = 2.34140921086573x10^-4 mol
Moles NH3 = 2.34140921086573x10^-4 mol * (2/3) = 1.56094x10^-4 mol
Now to convert from moles to molecules, just multiply by Avogadro's number:
1.56094x10^-4 * 6.0221409x10^23 = 9.400197448261x10^19
Rounding to 3 significant figures gives 9.40x10^19 molecules.</span>
Models help us better understand the phenomena
The answer is Sliver reacts with nitric acid to produce a gas.
It would move due to it not being<span> the same speed and in the same direction so it is acted upon by an unbalanced force.</span>