Answer:
Explanation:
100 miles * [ 5280 feet / 1 mile] * 12 inches / 1 foot]
100 * 5280 * 12 inches
6336000 inches in 100 miles
Answer:
Acid - A compound that increases hydrogen ions (H+) when it is dissolved in a solution
pH - A value from 0 to 14 that is used to specify how acidic or basic a compound is when it is dissolved in water
Base - A compound that increases hydroxide ions (OH−) when it is dissolved in a solution
Litmus paper - Used to measure the pH of substances by determining their hydrogen ion concentration
B.) Valence Electrons. The nucleus of the valence electrons attracts and pulls atoms together.
The specific gravity of a sample is the ratio of the density of the sample with respect to one standard sample. The standard sample used in specific gravity calculation is water whose density is 1 g/mL. The solution having specific gravity 1.30 is the density of the sample that is 1.30 g/mL. Thus the weight of the 30 mL sample is (30×1.30) = 39 g.
Now the mass of the 10 mL of water is 10 g as density of water is 10 g/mL. Thus after addition the total mass of the solution is (39 + 10) = 49g and the volume is (30 + 10) = 40 mL. Thus the density of the mixture will be
g/mL. Thus the specific gravity of the mixed sample will be 1.225 g/mL.
Answer:
Fe₃Si₇
Explanation:
In order to determine the empirical formula, we have to follow a series of steps.
Step 1: Determine the percent composition
Fe: 46.01%
Si: 53.99%
Step 2: Divide each percentage by the atomic mass of the element
Fe: 46.01/55.85 = 0.8238
Si: 53.99/28.09 = 1.922
Step 3: Divide all the numbers by the smallest one
Fe: 0.8238/0.8238 = 1
Si: 1.922/0.8238 = 2.33
Step 4: Multiply by numbers that make the coefficients whole.
Fe: 1 × 3 = 3
Si: 2.33 × 3 = 7
The empirical formula is Fe₃Si₇.