Answer:
ΔS° = -268.13 J/K
Explanation:
Let's consider the following balanced equation.
3 NO₂(g) + H₂O(l) → 2 HNO₃(l) + NO(g)
We can calculate the standard entropy change of a reaction (ΔS°) using the following expression:
ΔS° = ∑np.Sp° - ∑nr.Sr°
where,
ni are the moles of reactants and products
Si are the standard molar entropies of reactants and products
ΔS° = [2 mol × S°(HNO₃(l)) + 1 mol × S°(NO(g))] - [3 mol × S°(NO₂(g)) + 1 mol × S°(H₂O(l))]
ΔS° = [2 mol × 155.6 J/K.mol + 1 mol × 210.76 J/K.mol] - [3 mol × 240.06 J/K.mol + 1 mol × 69.91 J/k.mol]
ΔS° = -268.13 J/K
Answer:
So first thing to do in these types of problems is write out your chemical reaction and balance it:
Mg + O2 --> MgO
Then you need to start thinking about moles of Magnesium for moles of Magnesium Oxide. Based on the above equation 1 mole of Magnesium is needed to make one mole of Magnesium Oxide.
To get moles of magnesium you need to take the grams you started with (.418) and convert to moles by dividing by molecular weight of Mg (24.305), this gives you .0172 moles of Mg.
The theoretical yield would be the assumption that 100% of the magnesium will be converted into Magnesium Oxide, so you would get, based on the first equation, .0172 mol of MgO. Multiplying this by the molecular weight of MgO (24.305+16) gives us .693 g of MgO.
The percent yield is what you actually got in the experiment, and for this you subtract off the total mass from the crucible mass, or 27.374 - 26.687, which gives .66 g of MgO obtained.
Percent yield is acutal/theoretical, .66/.693, or 95.24%.
I'll let you do the same for the second trial, and average percent yield is just an average of the two trials percent yield.
Hope this helps.
Window cleaner is ammonia dissolved in water. This is an example of a _______.
Answer:
C3H8 + 5O2 => 3CO2 + 4H2O
Explanation:
Hydrocarbon combustion is the reaction between a hydrocarbon and O2 producing CO2 and water.
C3H8 + O2 => CO2 + H2O
First we balance the C and H.
C3H8 + O2 => 3CO2 + 4H2O
Now we balance O for the answer!
C3H8 + 5O2 => 3CO2 + 4H2O
Since the number of moles of a substance is the mass divided by the molar mass of the substance, we can just simply multiply the molar mass of magnesium chloride by the number of moles, which is 4.40 in this case.
To find the molar mass, refer to the periodic table for the relative atomic mass of Mg and Cl and add them together. Since there’s 2 chloride ions in MgCl2, double the relative atomic mass of Cl when adding.
24.31 + 35.45x2
=95.21
Now just multiply 95.21 to 4.40mol, which you’ll get 418.9g (corrected to 3 significant figures)