Answer:
$1246.90
Explanation:
Since the bike lost
% of it's value and it now currently at $
, we have to do 20% * $1039 to find the amount of money lost. 20%*1039=207.8. We have to add it up to find the original value so 1039+207.8=$1246.8
C.) Newton. & it's S.I. Unit of Force.
Hope this helps!
Schrödinger found the quantum mechanical model of the atom after Bohr’s model.
It is better than Bohr’s model because you can use mathematical equations to find electrons certain position. Unlike Bohr’s which is just a “cloud” where the an electron could possibly be.
Answer:
see explanation below
Explanation:
You are missing the reaction scheme, but in picture 1, I found a question very similar to this, and after look into some other pages, I found the same scheme reaction, so I'm gonna work on this one, to show you how to solve it. Hopefully it will be the one you are asking.
According to the reaction scheme, in the first step we have NaNH2/NH3(l). This reactant is used to substract the most acidic hydrogen in the alkine there. In this case, it will substract the hydrogen from the carbon in the triple bond leaving something like this:
R: cyclopentane
R - C ≡ C (-)
Now, in the second step, this new product will experiment a SN2 reaction, and will attack to the CH3 - I forming another alkine as follow:
R - C ≡ C - CH3
Finally in the last step, Na in NH3 are reactants to promvove the hydrogenation of alkines. In this case, it will undergo hydrogenation in the triple bond and will form an alkene:
R - CH = CH - CH3
In picture 2, you have the reaction and mechanism.
The pressure at the bottom : 19600 N/m²
<h3>Further explanation</h3>
Given
A ground water tank has its height 2m
Required
The pressure at its bottom
Solution
Hydrostatic pressure is the pressure caused by the weight of a liquid.
The weight of a liquid is affected by the force of gravity.
The hydrostatic pressure of a liquid can be formulated:

Ph = hydrostatic pressure (N / m², Pa)
ρ = density of liquid (kg / m³)
g = acceleration due to gravity (m / s²)
h = height / depth of liquid surface (m)
ρ = density of water (kg / m³) = 1000
g = acceleration due to gravity = 9.8 m/ sec²
The pressure
