12 HClO₄ + 1 P₄O₁₀ → 4 H₃PO₄ + 6 Cl₂O₇
<h3>Explanation</h3>
Balance by the conservation of atoms.
Assign coefficient <em>1 </em>to the species with the largest number of elements and atoms. H₃PO₄ contains three elements. Each of its molecule contains eight atoms, that's two more than the six atoms in a HClO₄ molecule. Start by assigning H₃PO₄ a coefficient of <em>1</em>.
? HClO₄ + ? P₄O₁₀ → <em>1</em> H₃PO₄ + ? Cl₂O₇
There are now three H atoms, one P atom on the product side. H₃PO₄ is the only product that contains H and P atoms. As a result, there should be the same number of H and P atoms on the reactant side.
- Among all reactants, only HClO₄ contains H atoms. Each HClO₄ molecule contains one H atom. Three H atoms correspond to three HClO₄ molecule.
- Among all reactants, only P₄O₁₀ contains P atoms. Each P₄O₁₀ molecule contains four P atoms. One P atom corresponds to 1/4 of a P₄O₁₀ molecule.
Thus
<em>3</em> HClO₄ + <em>1/4</em> P₄O₁₀ → <em>1</em> H₃PO₄ + ? Cl₂O₇
There are three Cl atoms in three HClO₄ molecules. HClO₄ is the only species that contains Cl among all reactants. There are three Cl atoms on the reactant side and shall be the same number of Cl atoms on the product side.
- Cl₂O₇ is the only molecule that contains Cl among the products. Each Cl₂O₇ molecule contains two Cl atoms. Three Cl atoms will correspond to 3/2 Cl₂O₇ molecules.
<em>3</em> HClO₄ + <em>1/4</em> P₄O₁₀ → <em>1</em> H₃PO₄ + <em>3/2</em> Cl₂O₇
Multiply both sides by the least common multiple of the denominators to eliminate the fraction. The least common multiple in this case is four.
12 HClO₄ + 1 P₄O₁₀ → 4 H₃PO₄ + 6 Cl₂O₇
Answer:
I think the answer is y-z>0
You are correct, but you needn't worry about the signs so much. Just remember that the negative sign is used to denote a loss of energy; since the water is hotter, it will be losing energy (-Q) and the iron will gain energy (Q). Now, we substitute the values:
-149.3 * 4.184 * (T - 95) = 412 * 0.44 * (T - 5)
Solving this equation for T,
T = 74.8 °C
In this item, we are simply to find the ions that may bond and are able to form a formula unit. We are also instructed to give out their name. There are numerous possible combinations of ions to form a compound. Some answers are given in the list below.
1. Na⁺ , Cl⁻ , NaCl ---> sodium chloride (this is most commonly known as table salt)
2. C⁴⁺ , O²⁻ , CO₂ ---> carbon dioxide
3. Al³+ , Cl⁻ , AlCl₃ ----> aluminum chloride
4. Ca²⁺ , Cl⁻ , CaCl₂ ---> calcium chloride
5. Li⁺ , Br⁻ , LiBr ---> lithium bromide
6. Mg³⁺ , O²⁻ , Mg₂O₃ ----> magnesium oxide
7. K⁺ , I⁻ , KI ---> potassium iodide
8. H⁺ , Cl⁻ , HCl --> hydrogen chloride
9. H⁺ , Br⁻ , HBr ----> hydrogen bromide
10. Na⁺ , Br⁻ , NaBr ---> sodium bromide
your answer will be :
B. <u>Na has a lower</u> <u>electronegativity than H</u>
because Na belongs to alkali metals which are least electronegative (most electro positive) but hydrogen is a non metal, it has higher electronegativity as compared to metals like Sodium (Na).