Answer:
Explanation:
The standard equation of the sinusoidal wave in one dimension is given by

Here, A be the amplitude of the wave
λ be the wavelength of the wave
v be the velocity of the wave
Φ be the phase angle
x be the position of the wave
t be the time
this wave is travelling along positive direction of X axis
The frequency of wave is f which relates with velocity and wavelength as given below
v = f x λ
The relation between the time period and the frequency is
f = 1 / T.
Answer:
Abby is standing (4.5^2 + 2.3^2)^1/2 from the far speaker
D2 = 5.05 m from the far speaker
The difference in distances from the speakers is
5.05 - 4.5 = .55 m (Let y be wavelength, lambda)
n y = 4.5
(n + 1) y = 5.05 for the speakers to be in phase at smallest wavelength
y = .55 m subtracting equations
f = v / y = 340 / .55 = 618 / sec should be the smallest frequency
v = initial velocity of launch of the stone = 12 m/s
θ = angle of the velocity from the horizontal = 30
Consider the motion of the stone along the vertical direction taking upward direction as positive and down direction as negative.
v₀ = initial velocity along vertical direction = v Sinθ = 12 Sin30 = 6 m/s
a = acceleration of the stone = - 9.8 m/s²
t = time of travel = 4.8 s
Y = vertical displacement of stone = vertical height of the cliff = ?
using the kinematics equation
Y = v₀ t + (0.5) a t²
inserting the values
Y = 6 (4.8) + (0.5) (- 9.8) (4.8)²
Y = - 84.1 m
hence the height of the cliff comes out to be 84.1 m
Yeah yeah I just got a hold of you and I saw that you were doing a good job and I thought you were doing a good job and I thought you were doing a good job and I thought you were doing a good job and I thought you were doing a good job and I thought you were doing a good job and I thought you were doing a good job and I thought you were doing a good job and I thought you were doing a good job and I thought you were doing a good job and I thought you were doing a good job and I thought you were doing a good job.