1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
myrzilka [38]
2 years ago
8

А______ is a unit of measurement for energy. (7 Letters)

Physics
1 answer:
a_sh-v [17]2 years ago
7 0

Answer:

Joule or kilowatt/hour

You might be interested in
An integrated circuit is a ___.
EastWind [94]
HI buddy!

An integrated circuit(IC) is a semiconductor water on which thousands of tiny resistors, transistors are fabricated.

Remember that an integrated circuit are the heart and brains of most circuits. They are the keystone of modern electronics.

I hope this helps!
5 0
2 years ago
Can someone give me an example or explanation of calculating energy from voltage? Many thanks!
antoniya [11.8K]
Expression to calculate energy from voltage: E= V*Q where E= energy, V= voltage, and Q= charge

Additional help:
-To find the Voltage ( V )
[ V = I x R ] V (volts) = I (amps) x R (Ω)

-To find the Current ( I )
[ I = V ÷ R ] I (amps) = V (volts) ÷ R (Ω)

-To find the Resistance ( R )
[ R = V ÷ I ] R (Ω) = V (volts) ÷ I (amps)

I hope that helps to some extent-
7 0
2 years ago
Scenario
Anvisha [2.4K]

Answer:

1) t = 23.26 s,  x = 8527 m, 2)   t = 97.145 s,  v₀ = 6.4 m / s

Explanation:

1) First Scenario.

After reading your extensive problem, we are going to solve it, for this exercise we must use the parabolic motion relationships. Let's carry out an analysis of the situation, for deliveries the planes fly horizontally and we assume that the wind speed is zero or very small.

Before starting, let's reduce the magnitudes to the SI system

         v₀ = 250 miles/h (5280 ft / 1 mile) (1h / 3600s) = 366.67 ft/s

         y = 2650 m

Let's start by looking for the time it takes for the load to reach the ground.

         y = y₀ + v_{oy} t - ½ g t²

in this case when it reaches the ground its height is zero and as the plane flies horizontally the vertical speed is zero

         0 = y₀ + 0 - ½ g t2

          t = \sqrt{ \frac{2y_o}{g} }

          t = √(2 2650/9.8)

          t = 23.26 s

this is the horizontal scrolling time

          x = v₀ t

          x = 366.67  23.26

          x = 8527 m

the speed at the point of arrival is

         v_y = v_{oy} - g t = 0 - gt

         v_y = - 9.8 23.26

         v_y = -227.95 m / s

Module and angle form

        v = \sqrt{v_x^2 + v_y^2}

         v = √(366.67² + 227.95²)

        v = 431.75 m / s

         θ = tan⁻¹ (v_y / vₓ)

         θ = tan⁻¹ (227.95 / 366.67)

         θ = - 31.97º

measured clockwise from x axis

We see that there must be a mechanism to reduce this speed and the merchandise is not damaged.

2) second scenario. A catapult located at the position x₀ = -400m y₀ = -50m with a launch angle of θ = 50º

we look for the components of speed

           cos θ = v₀ₓ / v₀

           sin θ = v_{oy} / v₀

            v₀ₓ = v₀ cos θ

            v_{oy} = v₀ sin θ

we look for the time for the arrival point that has coordinates x = 0, y = 0

            y = y₀ + v_{oy} t - ½ g t²

            0 = y₀ + vo sin θ t - ½ g t²

            0 = -50 + vo sin 50 t - ½ 9.8 t²

            x = x₀ + v₀ₓ t

            0 = x₀ + vo cos θ t

            0 = -400 + vo cos 50 t

podemos ver que tenemos un sistema de dos ecuación con dos incógnitas

          50 = 0,766 vo t – 4,9 t²

          400 =   0,643 vo t

resolved

          50 = 0,766 ( \frac{400}{0.643 \ t}) t – 4,9 t²

          50 = 476,52 t – 4,9 t²

          t² – 97,25 t + 10,2 = 0

we solve the quadratic equation

         t = [97.25 ± \sqrt{97.25^2 - 4 \ 10.2}] / 2

         t = 97.25 ±97.04] 2

         t₁ = 97.145 s

         t₂ = 0.1 s≈0

the correct time is t1 the other time is the time to the launch point,

         t = 97.145 s

let's find the initial velocity

         x = x₀ + v₀ cos 50 t

         0 = -400 + v₀ cos 50 97.145

         v₀ = 400 / 62.44

         v₀ = 6.4 m / s

5 0
2 years ago
How was the gravitational constant G first determined
Oliga [24]
<span>In equation form, this is often expressed as follows: The constant of proportionality in this equation is G - the universal gravitation constant. The value of G was not experimentally determined until nearly a century later (1798) by Lord Henry Cavendish using a torsion balance.</span>
6 0
3 years ago
A sphere of mass m and radius r is released from rest at the top of a curved track of height H. The sphere travels down the curv
iren2701 [21]

Explanation:

<em>(a) On the dots below, which represent the sphere, draw and label the forces (not components) that are exerted on the sphere at point A and at point B, respectively.  Each force must be represented by a distinct arrow starting on and pointing away from the dot.</em>

At point A, there are three forces acting on the sphere: weight force mg pulling down, normal force N pushing left, and static friction force Fs pushing down.

At point B, there are three forces acting on the sphere: weight force mg pulling down, normal force N pushing down, and static friction force Fs pushing right.

<em>(b) i. Derive an expression for the speed of the sphere at point A.</em>

Energy is conserved:

PE = PE + KE + RE

mgH = mgR + ½mv² + ½Iω²

mgH = mgR + ½mv² + ½(⅖mr²)(v/r)²

mgH = mgR + ½mv² + ⅕mv²

gH = gR + ⁷/₁₀ v²

v² = 10g(H−R)/7

v = √(10g(H−R)/7)

<em>ii. Derive an expression for the normal force the track exerts on the sphere at point A.</em>

Sum of forces in the radial (-x) direction:

∑F = ma

N = mv²/R

N = m (10g(H−R)/7) / R

N = 10mg(H−R)/(7R)

<em>(c) Calculate the ratio of the rotational kinetic energy to the translational kinetic energy of the sphere at point A.</em>

RE / KE

= (½Iω²) / (½mv²)

= ½(⅖mr²)(v/r)² / (½mv²)

= (⅕mv²) / (½mv²)

= ⅕ / ½

= ⅖

<em>(d) The minimum release height necessary for the sphere to travel around the loop and not lose contact with the loop at point B is Hmin.  The sphere is replaced with a hoop of the same mass and radius.  Will the value of Hmin increase, decrease, or stay the same?  Justify your answer.</em>

When the sphere or hoop just begins to lose contact with the loop at point B, the normal force is 0.  Sum of forces in the radial (-y) direction:

∑F = ma

mg = mv²/R

gR = v²

Applying conservation of energy:

PE = PE + KE + RE

mgH = mg(2R) + ½mv² + ½Iω²

mgH = 2mgR + ½mv² + ½(kmr²)(v/r)²

mgH = 2mgR + ½mv² + ½kmv²

gH = 2gR + ½v² + ½kv²

gH = 2gR + ½v² (1 + k)

Substituting for v²:

gH = 2gR + ½(gR) (1 + k)

H = 2R + ½R (1 + k)

H = ½R (4 + 1 + k)

H = ½R (5 + k)

For a sphere, k = 2/5.  For a hoop, k = 1.  As k increases, H increases.

<em>(e) The sphere is again released from a known height H and eventually leaves the track at point C, which is a height R above the bottom of the loop, as shown in the figure above.  The track makes an angle of θ above the horizontal at point C.  Express your answer in part (e) in terms of m, r, H, R, θ, and physical constants, as appropriate.  Calculate the maximum height above the bottom of the loop that the sphere will reach.</em>

C is at the same height as A, so we can use our answer from part (b) to write an equation for the initial velocity at C.

v₀ = √(10g(H−R)/7)

The vertical component of this initial velocity is v₀ sin θ.  At the maximum height, the vertical velocity is 0.  During this time, the sphere is in free fall.  The maximum height reached is therefore:

v² = v₀² + 2aΔx

0² = (√(10g(H−R)/7) sin θ)² + 2(-g)(h − R)

0 = 10g(H−R)/7 sin²θ − 2g(h − R)

2g(h − R) = 10g(H−R)/7 sin²θ

h − R = 5(H−R)/7 sin²θ

h = R + ⁵/₇(H−R)sin²θ

4 0
2 years ago
Other questions:
  • Taylor drives 5 miles in 10 minutes. She stops at a light for 2 minutes. She then travels another 10 miles in 8 minutes. What wa
    14·1 answer
  • an airplane releases a ball as it flies parallel to the ground at a height of 235m. if the ball lands on the ground exactly at 2
    6·1 answer
  • Calculate the potential difference across a 25- resistor if a 0.3-A current is flowing through it.
    6·2 answers
  • How does radiation help treat cancer?
    13·2 answers
  • The gravitational force exerted on a baseball is 2.24 N down. A pitcher throws the ball horizontally with velocity 17.0 m/s by u
    14·1 answer
  • How do the two reflex arcs differ in complexity
    12·1 answer
  • Granite is uplifted by the movement of tectonic plates. It will most likely become _____. igneous rock sedimentary rock metamorp
    6·1 answer
  • Frente a una lente convergente delgada se coloca un objeto a una distancia de 50 cm. La imagen de este objeto aparece del otro l
    9·1 answer
  • Assume your computer has a power rating of 50.0 W, and you use your computer for 7.0 hours a day for a normal school day. If the
    9·1 answer
  • An archer shoots an arrow with a mass of 45.0 grams from bow pulled
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!