Answer:
a) v₁ = 8.20 10³ m / s
, b) v₁’= 8.4 10³ m / s
Explanation:
a) For this exercise we can use energy conservation, in two points
Initial. On the earth's surface
Em₀ = K + U = ½ m v₁² - G m Me / Re²
Final. In the orbit at a height of h = 500 10³m
= K + U = ½ m v₂² - G m Me / (Re+h)²
Em₀ =
½ m v₁² - G m Me / Re² = ½ m v₂² - G m Me / (Re+h)²
½ v₁² - ½ v₂² = G Me (1 / Re² - 1 / (Re + h)²)
To find the speed of the rocket in orbit we use Newton's sunga law, where force is the force of gravitation
F = m a
The acceleration is centripetal
a = v² / r
G m Me / (Re+h) 2 = m v2 / (Re+h)
v₂² = G Me / (Re + h)
Let's calculate
v² = √ (6.67 10⁻¹¹ 5.98 10²⁴ / (6.37 10⁶ +0.5 10⁶)
v² = √ 58.05909 10⁶
v₂ = 7.62 10³ m / s
Now we can find the clearance speed (v1)
v₁² = 2 G Me (1 / Re2 - 1 / (Re + h) 2) + v₂²
Let's calculate
v₁² = 2 6.67 10⁻¹¹ 5.98 10²⁴ (1 / 6.37 10⁶ - 1 / 6.87 10⁶) + 58.059 10⁶
v₁² = 0.91145 10⁷ + 5.8059 10⁷
v₁ = √ 67.172 10⁶
v₁ = 8.20 10³ m / s
b) If the same place is launched into a polar orbit, the fundamental change is the distance that we can enter using the Pythagorean theorem.
h’= √ 500 + 5002 = 500 √2
h’= √ 2 0.5 10⁶ m
Re + h’= 6.37 10⁶ + √2 0.5 10⁶
Re + h’= 7.077 10⁶ m
Calculate
v₁²’= 2 6.67 10⁻¹¹ 5.98 10²⁴ (1 / 6.37 10⁶ - 1 / 7.077 10⁶) + 58.059 10⁶
v₁²’= 1,251 10⁷ + 5,8059 10⁷
v₁’= 8.4 10³ m / s