The correct answer is:
_________________________________________________________
" F and Br , because they are in the same group" .
_________________________________________________________
Note:
_________________________________________________________
Choice [B]: "F and Br ; because they are in the same period" ; is incorrect; since "F" and "Br" are not in the same "period" (that is, "row").
______________________________________________________
Choice [C]: "Na and Mg; because they are in the same group {"column"} ; is incorrect; since: "Na" and "Mg are NOT in the same group {"column"].
_______________________________________________________
Choice [D]: "Na and Mg" ; because they are in the same period {"row"}; is incorrect. Note: "Na" and "Mg" are, in fact, in the same period {"row"}. However, as aforementioned, {Mg and Na} are not in the same group {"column".}.
Note: The similiarities in physical and chemistry properties among elements are determined and organized — or tend to be so—by "groups" {"columns"} — NOT by "periods" {rows}.
______________________________________________________
Answer: Earth, though the dwarf planet Pluto does have ice on it.
Answer:
Average atomic mass of carbon = 12.01 amu.
Explanation:
Given data:
Abundance of C¹² = 98.89%
Abundance of C¹³ = 1.11%
Atomic mass of C¹² = 12.000 amu
Atomic mass of C¹³ = 13.003 amu
Average atomic mass = ?
Solution:
Average atomic mass of carbon = (abundance of 1st isotope × its atomic mass) +(abundance of 2nd isotope × its atomic mass) / 100
Average atomic mass of carbon = (12.000×98.89)+(13.003×1.11) /100
Average atomic mass of carbon= 1186.68 + 14.43333 / 100
Average atomic mass of carbon = 1201.11333 / 100
Average atomic mass of carbon = 12.01 amu.
A.
Physical change
Step by step explanation;:)
Because subatomic particles ARE what make up atoms.