Answer:I am not sure how
Explanation: sorry free trial
1Hz = 1 cycle per second
19 cycles / .5 seconds = 38Hz
Answer:
12.89 moles
Explanation:
Before we solve the question, we have to balance the equation of the reaction first. The balanced reaction will be:
2 NO + 2 H2→ N2 + 2 H2O
There are 180.5g of N2 produced, the number of produced in moles will be: 180.5g / (28g/mol)= 6.446 moles
The coefficient of H2 is two and the coefficient of N2 is one. Mean that we need two moles of H2 for every one mole of N2 produced. The number of H2 reacted will be: 2/1 * 6.446 moles = 12.89 moles
Answer:
Rate ≅ 1.01 M/s (3 sig. figs.)
Explanation:
Given A(g) + B(g) => AB(g)
Rate = k[A(g)][B(g)]²
at Rate (1) = 0.239M/s = k[2.00M][2.00M]² => k = (0.239M/s) / (2.00M)(2.00M)²
k = 0.29875 M⁻²·s⁻¹
Rate (2) = k[A(g)][B(g)]² = (0.29875M⁻²·s⁻¹)(4.81M)(2.65M)² = 1.009124472 M/s (calc. ans.) ≅ 1.01 M/s (3 sig. figs.)
Colligative
properties calculations are used for this type of problem. Calculations are as
follows:<span>
ΔT(freezing point) = (Kf)(molality)
ΔT(freezing point)
= 1.86 °C kg / mol (molality)
</span>Tf - 102.08 = 1.86m
Tf = 1.86m + 102.08
The concetration of the solution is needed in order to obtain a specific value.