<span>Each mole contains Avagodro's number of atoms i.e. 6.023x10^23, so
3 moles x 6.023x10^23 atoms/mole = 18.069x10^23 atoms = 1.8x19^24 atoms </span>
Answer:
The equilbrium constant is 179.6
Explanation:
To solve this question we can use the equation:
ΔG = -RTlnK
<em>Where ΔG is Gibbs free energy = 12.86kJ/mol</em>
<em>R is gas constant = 8.314x10⁻³kJ/molK</em>
<em>T is absolute temperature = 298K</em>
<em>And K is equilibrium constant.</em>
Replacing:
12.86kJ/mol = -8.314x10⁻³kJ/molK*298K lnK
5.19 = lnK
e^5.19 = K
179.6 = K
<h3>The equilbrium constant is 179.6</h3>
Answer:
Mass of water produced is 22.86 g.
Explanation:
Given data:
Mass of hydrogen = 2.56 g
Mass of oxygen = 20.32 g
Mass of water = ?
Solution:
Chemical equation:
2H₂ + O₂ → 2H₂O
Number of moles of oxygen:
Number of moles = mass/ molar mass
Number of moles = 20.32 g/ 32 g/mol
Number of moles = 0.635 mol
Number of moles of hydrogen:
Number of moles = mass/ molar mass
Number of moles = 2.56 g/ 2 g/mol
Number of moles = 1.28 mol
Now we will compare the moles of water with oxygen and hydrogen.
O₂ : H₂O
1 : 2
0.635 ; 2×0.635 = 1.27
H₂ : H₂O
2 : 2
1.28 : 1.28
The number of moles of water produced by oxygen are less thus it will be limiting reactant.
Mass of water produced:
Mass = number of moles × molar mass
Mass = 1.27 × 18 g/mol
Mass = 22.86 g
Elephants are really cool