Answer:
The change in temperature that occurs when 8000 J of heat is used by a mass 75 g of water is 25.4 °C
Explanation:
H = mc ΔT
m = 75 g
c = 4. 200 J/ g °C
H = 8000 J
ΔT =?
Rearranging the formula, making ΔT the subject of formula;
ΔT = H / m c
ΔT = 8000 / 75 * 4.200
ΔT = 8000 / 315
ΔT = 25.4 °C
Answer:
41.45 mL
Explanation:
Applying the general gas equation,
PV/T = P'V'/T'............... Equation 1
Where P = Initial pressure of hydrogen, V = Initial volume of hydrogen, T= Initial Temperature of hydrogen, P' = Final pressure of hydrogen, V' = Final Volume of Hydrogen, T' = Final Temperature.
make V' the subject of the equation
V' = PVT'/TP'................ Equation 2
Given: P = 718 torr = (718×133.322) N/m² = 95725.196 N/m², V = 47.9 mL = 0.0479 dm³, T = 26 °C = (26+273) = 299 K, T' = 273 K, P' = 101000 N/m²
Substitute these values into equation 2
V' = ( 95725.196×0.0479×273)/(299×101000)
V' = 0.04145 dm³
V' = 41.45 mL
<span>Answer:
Bronsted base is something that accepts proton (H+) and acid is something that donates H+
so here CH3NH2 will be the base and H2S is the acid.</span>
Answer:
The sequence order should be DNA to RNA to Proteins.
Explanation:
For you to get the RNA sequence, you need to find a match for the DNA sequence. Your RNA sequence should only have either AUCG for your 4 nucleotide bases. Once you have the RNA sequence found by pairing it with the DNA sequence, you would then to do use an RNA codon chart to find the amino acids. These amino acids are basically your proteins.
Answer:
Option D 2220mmHg
Because there are three samples each with pressure as 740mmHg so in order to find the total pressure we multiply it by 3
Explanation:
I hope this will help you :)