No, x-rays do not travel slower than infrared radiation or even the opposite. Both are travelling in vacuum therefore they travel at same speed. They differ in the frequency of the electromagnetic waves.
Answer:
2.0x10¹⁷ Hz is the frequency of the X-ray
Explanation:
We can find the frequency of a wave of energy from the wavelenght and its speed using the formula:
v = λƒ
<em>Where v is speed (For electromagnetic radiation = 3.0x10⁸m/s)</em>
<em>λ is the wavelength in meters = 1.5x10⁻⁹m</em>
<em>And f is the frequency in s⁻¹ = Hz</em>
<em />
Replacing:
3.0x10⁸m/s = 1.5x10⁻⁹m*ƒ
3.0x10⁸m/s / 1.5x10⁻⁹m = f
f =
<h3>2.0x10¹⁷ Hz is the frequency of the X-ray</h3>
<em />
Answer:
Kc for this reaction is 0.43
Explanation:
This is the equilibrium:
N₂(g) + 2H₂O(g) → 2NO(g) +2H₂(g)
And we have all the concentration at equilibrium:
N₂: 0.25M
H₂ : 1.3M
NO: 0.33M
H₂: 1.2M
They are ok, because they are in MOLARITY. (mol/L)
Let's make the expression for Kc
Kc = ( [NO]² . [H₂]² ) / ([N₂] . [H₂O]²)
Kc = (0.33² . 1.2²) / (0.25 . 1.2²)
Kc = 0.4356
In two significant digits. 0.43
Because the physical appearance change hope this helps
<span />
Gain or lose.
The exchange of electrons in chemical bonding seeks to fulfill the octet rule. There are some exceptions, such as with hydrogen and helium, whose valence shells have a capacity of two electrons.