The mechanism of enzymatic action within a single substance
The second law of thermodynamics is a statement of the law of conservation of energy say that heat cannot be completely converted into mechanical energy
Answer:
Because of homologous recombination
Explanation:
- When genes are establish on different DNAs or far apart on the same chromosome, they are classified self-sufficiently and are said to be unlinked.
- When genes are very close together on the same chromosome, they are said to be linked. That means that alleles, or genetic versions, that are already together on a chromosome will be inherited as a unit more often than not.
- We can see if two genes are linked, and how closely, by using data from genetic crosses to calculate the frequency of recombination.
- Using the technique of discovery recombination happenings for numerous gene pairs, we can make link maps that show the order and relative distances of the genes on the chromosome.
- When the genes are on the same chromosome but far apart, they are classified independently due to crossing (homologous recombination). This is a procedure that happens at the start of meiosis, in which homologous DNAs randomly exchange matching fragments. Crossing be able to connection new alleles in combination on the same chromosome, causing them to enter the same gamete. When the genes are far apart, the crossing occurs with sufficient frequency for all types of gametes to occur with 25% percentage frequency.
- When the genes are very close together on the same chromosome, the crossing still occurs, but the result (in terms of the types of gametes produced) is different. Instead of being classified independently, genes tend to "stay together" during meiosis. That is, alleles of genes that are already together on a chromosome will tend to pass as a unit to gametes. In this case, the genes are linked
Carbohydrates (<span>Macromolecule which is used for structural purposes for plants and animals and are good for short-term energy storage)</span>
The question is incomplete. The complete question is:
In pea plants, yellow pod color is recessive and green pod color is dominant. A heterozygous plant produced offspring with a plant that is homozygous dominant for the trait. What is a percent chance that the pea plant will have green pods.
Answer:
100%
Explanation:
Let's assume that the allele "G" gives green pod color while the allele "g" imparts yellow color to the pods. The genotype of the heterozygous plant would be "Gg". A cross between heterozygous green plant (Gg) with homozygous dominant (GG) plant would produce progeny in following ratio=
Gg x GG= 1/2 GG (green): 1/2 Gg (green)
Therefore, there are 100% chances that the progeny plant will have green pods.