Axioms serve as the starting point of other mathematical statements. These statements, which are derived from axioms, are called theorems. A theorem, by definition, is a statement proven based on axioms, other theorems, and some set of logical connectives.
<h3>
Hope it helps...</h3>
Problem 7)
The answer is choice B. Only graph 2 contains an Euler circuit.
-----------------
To have a Euler circuit, each vertex must have an even number of paths connecting to it. This does not happen with graph 1 since vertex A and vertex D have an odd number of vertices (3 each). The odd vertex count makes it impossible to travel back to the starting point, while making sure to only use each edge one time only.
With graph 2, each vertex has exactly two edges attached to it. So an Euler circuit is possible here.
================================================
Problem 8)
The answer is choice B) 5
-----------------
Work Shown:
abc base 2 = (a*2^2 + b*2^1 + c*2^0) base 10
101 base 2 = (1*2^2 + 0*2^1 + 1*2^0) base 10
101 base 2 = (1*4 + 0*2 + 1*1) base 10
101 base 2 = (4 + 0 + 1) base 10
101 base 2 = 5 base 10
Answer:
x = -6
Step-by-step explanation:
