Answer:
Steven has to row at a speed to reach the same horizontal spot at the other side of the river is, V = 6 m/s
Explanation:
Given data,
The river flowing south at the rate, v = 3 m/s
To reach the other side directly across the river, he aims the raft, Ф = 30°
The speed of his raft across the river is given by the formula,
V = v / Sin Ф
= 3 / Sin 30°
= 6 m/s
Steven has to row at a speed to reach the same horizontal spot at the other side of the river is, V = 6 m/s
The US English System of measurement grew out of the manner in which people secured measurements using body parts and familiar objects. For example, shorter ground distances were measured with the human foot and longer distances were measured by paces, with one mile being 1,000 paces. Capacities were measured with household items such as cups, pails (formerly called gallons) and baskets.
Answer:
To calculate the predicted surface elevation of a 50km thick crust above a surface of 2.5km we are given a density of 3 gram per centimeter cube.
The displacement of the material will be calculated by subtracting the surface elevation of 2.5 km from the 50 km thick crust. Therefore 50-25= 47.5 km.
Thus let the density of the material be Pm
50*3= 47.5*Pm
Therefore: Pm= (50*3)/47.5= 3.16gram per centimeter cube
Thus with an average density of 2.8gram per centimeter cube
50*2.8= (50-x)*3.16
(50-x)= (50*2.8)/3.16
50-x=44.3
x=50-44.3= 5.7
Explanation:
To calculate the predicted surface elevation of a 50km thick crust above a surface of 2.5km we are given a density of 3 gram per centimeter cube.
The displacement of the material will be calculated by subtracting the surface elevation of 2.5 km from the 50 km thick crust. Therefore 50-25= 47.5 km.
Thus let the density of the material be Pm
50*3= 47.5*Pm
Therefore: Pm= (50*3)/47.5= 3.16gram per centimeter cube
Thus with an average density of 2.8gram per centimeter cube
50*2.8= (50-x)*3.16
(50-x)= (50*2.8)/3.16
50-x=44.3
x=50-44.3= 5.7
Answer:
b) 5 J
Explanation:
Work is the energy transferred by an object when acted by a force along a displacement. Work is the product of force and displacement. The SI unit of work is the joules (J)
To calculate the work done by the force, we have to first get the displacement (D) of the object. Hence:
Displacement (D) = Q(3, 8) - P(1, 3) = (3 - 1, 8 - 3) = (2, 5) = 2i + 5j
The work done is the dot product of the force and the displacement. Force = 5i - j. Hence:
Work done = (5i - j)(2i + 5j) = 10 - 5 = 5 J