What picture...? You didn't upload one
Answer:
<u>We are given:</u>
initial velocity (u) = 20m/s
acceleration (a) = 4 m/s²
time (t) = 8 seconds
displacement (s) = s m
<u />
<u>Solving for Displacement:</u>
From the seconds equation of motion:
s = ut + 1/2 * at²
replacing the variables
s = 20(8) + 1/2 * (4)*(8)*(8)
s = 160 + 128
s = 288 m
Covalent bonds. Silicon, carbon, germanium, and a few other elements form covalently bonded solids. In these elements there are four electrons in the outer sp-shell, which is half filled. ... In the covalent bond an atom shares one valence (outer-shell) electron with each of its four nearest neighbour atoms.
Answer:
(a). The spring compressed is
.
(b). The acceleration is 1.5 g.
Explanation:
Given that,
Acceleration = a
mass = m
spring constant = k
(a). We need to calculate the spring compressed
Using balance equation

....(I)
The spring compressed is
.
(b). If the compression is 2.5 times larger than it is when the mass sits in a still elevator,
The compression is given by

Here, acceleration is zero
So, 
We need to calculate the acceleration
Put the value of x in equation (I)




Hence, (a). The spring compressed is
.
(b). The acceleration is 1.5 g.
Answer:
-48 N
Explanation:
mass of door (m) = 4 kg
acceleration of the door = 12 m/s^{2}
force exerted by the person = 48 N
From Newton's third law of motion, action and reaction are equal but opposite. Therefore the force exerted on the door by the person which is 48 N will be the same as the force exerted on the person by the door but opposite in its direction, and this would be - 48 N