Answer:
<u>We are given:</u>
u = 2.5 m/s
a = 0.2 m/s/s
t = 25 seconds
v = v m/s
<u>Solving for 'v':</u>
From the first equation of motion:
v = u + at
Replacing the values
v = 2.5 + (0.2)(25)
v = 2.5 + 5
v = 7.5 m/s
Table sugar dissolves in water because when a sucrose molecule breaks from the sugar crystal, it is immediately surrounded by water molecules. The sucrose has hydroxyl groups that have a slight negative charge. ... Sand can't dissolve in waterbecause the 'spaces' in between the water particles. :)
Answer:
0.247 J = 247 mJ
Explanation:
From the principle of conservation of energy, the workdone by the applied force, W = kinetic energy change + electric potential energy change.
So, W = ΔK + ΔU =1/2m(v₂² - v₁²) + q(V₂ - V₁) where m = mass of particle = 5.4 × 10⁻² kg, q = charge of particle = 5.10 × 10⁻⁵ C, v₁ = initial speed of particle = 2.00 m/s, v₂ = final speed of particle = 3.00 m/s, V₁ = potential at surface A = 5650 V, V₂ = potential at surface B = 7850 V.
So, W = ΔK + ΔU =1/2m(v₂² - v₁²) + q(V₂ - V₁)
= 1/2 × 5.4 × 10⁻²kg × ((3m/s)² - (2 m/s)²) + 5.10 × 10⁻⁵ C(7850 - 5650)
= 0.135 J + 0.11220 J
= 0.2472 J
≅ 0.247 J = 247 mJ
Momentum is mass times velocity of the object
p = m • v
p = (7700 kg)(14 m/s)
p = 107809 kg m/s