1. 168.1 Hz
To find the apparent frequency heard by the driver in the car, we can use the formula for the Doppler effect:

where
f is the original sound of the horn
v is the speed of sound
is the velocity of the observer (the driver and the car), which is positive if the observer is moving towards the source and negative if it is moving away
is the velocity of the sound source (the train), which is positive if the source is moving away from the observer and negative otherwise
In this problem we have, according to the sign convention used:

Substituting, we find:

2. 
The speed of light can be calculated as

where
d is the distance travelled
t is the time taken
In this problem:
is the total distance travelled by the laser beam (twice the distance between the Earth and the Moon)
t = 2.60 s is the time taken
Substituting in the formula,

Answer:
Explanation:
If the energy levels of n1 and n2 are high, the difference of their energy level will tend to zero thereby making the energy of the emitted photons very low.
Answer:
4 smaller disks
Explanation:
We are given;
Mass of smaller and larger disks = M
Radius of smaller disk = R
Radius of larger disk = 4R
Formula for moment of inertia about cylinder axis is:
I = ½MR²
Thus;
For small disk, I_small = ½MR²
For large disk, I_large = ½M(2R)² = 2MR²
We are told that moment of inertia of System A consists of two of the larger disks. Thus;
I_A = 2 × I_large = 2 × 2MR²
I_A = 4MR²
We are also told that System B consists of one of the larger disks and a number of the smaller disks. Thus;
I_B = I_large + n(I_small)
Where n is the number of smaller disks.
I_B = 2MR² + n(½MR²)
I_B = MR²(2 + n/2)
We are told that the moment of inertia for system A equals the moment of inertia for system B. Thus;
I_A = I_B
So;
4MR² = MR²(2 + n/2)
MR² will cancel out to give;
4 = 2 + n/2
Multiply through by 2 to give;
8 = 4 + n
n = 8 - 4
n = 4
Answer:
a)W= - 720 J
b)ΔU= 330 J
Explanation:
Given that
P = 0.8 atm
We know that 1 atm = 100 KPa
P = 80 KPa
V₁ = 12 L = 0.012 m³ ( 1000 L = 1 m³)
V₂ = 3 L = 0.003 m³
Q= - 390 J ( heat is leaving from the system )
We know that work done by gas given as
W = P (V₂ -V₁ )
W= 80 x ( 0.003 - 0.012 ) KJ
W= - 0.72 KJ
W= - 720 J ( Negative sign indicates work done on the gas)
From first law of thermodynamics
Q = W + ΔU
ΔU=Change in the internal energy
Now by putting the values
- 390 = - 720 + ΔU
ΔU= 720 - 390 J
ΔU= 330 J