Answer:
Concentration of product at equilibrium ;
![[H^+]=0.0000229 M](https://tex.z-dn.net/?f=%5BH%5E%2B%5D%3D0.0000229%20M)
![[CN^-]=0.0000229 M](https://tex.z-dn.net/?f=%5BCN%5E-%5D%3D0.0000229%20M)
Explanation:

initially
0.85 M 0 0
(0.85-x)M x x
The equilibrium constant of reaction = 
The expression of an equilibrium cannot can be written as:
![K_c=\frac{[H^+][CN^-]}{[HCN]}](https://tex.z-dn.net/?f=K_c%3D%5Cfrac%7B%5BH%5E%2B%5D%5BCN%5E-%5D%7D%7B%5BHCN%5D%7D)

Solving for x:
x = 0.0000229
Concentration of product at equilibrium ;
![[H^+]=0.0000229 M](https://tex.z-dn.net/?f=%5BH%5E%2B%5D%3D0.0000229%20M)
![[CN^-]=0.0000229 M](https://tex.z-dn.net/?f=%5BCN%5E-%5D%3D0.0000229%20M)
Answer:
Q14: 17,140 g = 17.14 kg.
Q16: 504 J.
Explanation:
<u><em>Q14:</em></u>
- To solve this problem, we can use the relation:
<em>Q = m.c.ΔT,</em>
where, Q is the amount of heat absorbed by ice (Q = 3600 x 10³ J).
m is the mass of the ice (m = ??? g).
c is the specific heat of the ice (c of ice = 2.1 J/g.°C).
ΔT is the difference between the initial and final temperature (ΔT = final T - initial T = 100.0°C - 0.0°C = 100.0°C).
∵ Q = m.c.ΔT
∴ (3600 x 10³ J) = m.(2.1 J/g.°C).(100.0°C)
∴ m = (3600 x 10³ J)/(2.1 J/g.°C).(100.0°C) = 17,140 g = 17.14 kg.
<u><em>Q16:</em></u>
- To solve this problem, we can use the relation:
<em>Q = m.c.ΔT,</em>
where, Q is the amount of heat absorbed by ice (Q = ??? J).
m is the mass of the ice (m = 12.0 g).
c is the specific heat of the ice (c of ice = 2.1 J/g.°C).
ΔT is the difference between the initial and final temperature (ΔT = final T - initial T = 0.0°C - (-20.0°C) = 20.0°C).
∴ Q = m.c.ΔT = (12.0 g)(2.1 J/g.°C)(20.0°C) = 504 J.
Answer:
have stars that might appear to wobble
often have one star that is brighter than the other
Explanation:
A binary star system is a star system made up of mostly two stars that moves round their common fixed center.
The two orbiting stars are gravitationally bonded to one another and they move round each other.
Most binary stars might appear wobble. One of the stars often appears brighter than the other.
They form molecules which can be in solution form if diluted in water, but some do form solutions on exposure to the atmosphere i.e they are deliquescent like pellets of sodium hydroxide