The correct answer is Choice A.
If you plot the points on a graph, you will see that there is a slope of -1 and the y-intercept is (0, 3).
This matches the equation of y = -x + 3 in Choice A.
2x^(3)y+7xy-3x^(2)-12y
is in standard form
Of the four x-coordinates to choose only 1/√(11) belongs can belong to the unit circle.
The other three x-coordinates are greater than 1, then they are out of the unit circle.
The unit circle formula is x^2 +y^2 = 1
Then to find the y-coordinate given the x-coordinate you can solve for y from that formula:
y^2 = 1 - x^2
y = (+/-)√(1-x^2)
Substitute the value of x
y = (+/-)√{1 - [1/√(11)]^2} = (+/-) √{(1 - 1/11} =(+/-) √ {(11 -1)/11 =(+/-)√(10/11) ≈ +/- 0.95