1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
navik [9.2K]
3 years ago
8

A rectangular tank with a square base is 1/4 full of water the side lengths of the square bases 20 inches one another 3000 cubic

inches of the water is poured into the tank it becomes 2/3 full find the capacity of the tank
Mathematics
1 answer:
kvv77 [185]3 years ago
7 0
1/4 to 2/3

2/3-1/4=8/12-3/12=5/12
so the change is 5/12

the volume of the tank and dimentions are irrelivant for now

so

3000 cubic inches was added and that was a change of 5/12

5/12 of full=3000
times both sides by 12/5
full=7200

the capacity is 7200 cubic inches
You might be interested in
Y=2x+3 y=4x+7 solve by elimination
lina2011 [118]
2x+3 = 4x+7
-4 = 2x
x = -2
6 0
3 years ago
Read 2 more answers
What is the answer? thanks!
omeli [17]

Answer:

Step-by-step explanation:M angel 7 = 60 degrees, angle 1 is 60 as well because it is vertical. So your answer is A: 60. I hope my answer helped you. ;).

6 0
3 years ago
Compared to its 'parent' function f(x)=x^2, describe the changes if f(x)=-x^2-3
Morgarella [4.7K]

Answer:

It is inverted and shifted down 3 units.

Red is f(x) = x^2

Purple is f(x) = -x^2 -3

Step-by-step explanation:

5 0
3 years ago
99 POINT QUESTION, PLUS BRAINLIEST!!!
VladimirAG [237]
First, we have to convert our function (of x) into a function of y (we revolve the curve around the y-axis). So:


y=100-x^2\\\\x^2=100-y\qquad\bold{(1)}\\\\\boxed{x=\sqrt{100-y}}\qquad\bold{(2)} \\\\\\0\leq x\leq10\\\\y=100-0^2=100\qquad\wedge\qquad y=100-10^2=100-100=0\\\\\boxed{0\leq y\leq100}

And the derivative of x:

x'=\left(\sqrt{100-y}\right)'=\Big((100-y)^\frac{1}{2}\Big)'=\dfrac{1}{2}(100-y)^{-\frac{1}{2}}\cdot(100-y)'=\\\\\\=\dfrac{1}{2\sqrt{100-y}}\cdot(-1)=\boxed{-\dfrac{1}{2\sqrt{100-y}}}\qquad\bold{(3)}

Now, we can calculate the area of the surface:

A=2\pi\int\limits_0^{100}\sqrt{100-y}\sqrt{1+\left(-\dfrac{1}{2\sqrt{100-y}}\right)^2}\,\,dy=\\\\\\= 2\pi\int\limits_0^{100}\sqrt{100-y}\sqrt{1+\dfrac{1}{4(100-y)}}\,\,dy=(\star)

We could calculate this integral (not very hard, but long), or use (1), (2) and (3) to get:

(\star)=2\pi\int\limits_0^{100}1\cdot\sqrt{100-y}\sqrt{1+\dfrac{1}{4(100-y)}}\,\,dy=\left|\begin{array}{c}1=\dfrac{-2\sqrt{100-y}}{-2\sqrt{100-y}}\end{array}\right|= \\\\\\= 2\pi\int\limits_0^{100}\dfrac{-2\sqrt{100-y}}{-2\sqrt{100-y}}\cdot\sqrt{100-y}\cdot\sqrt{1+\dfrac{1}{4(100-y)}}\,\,dy=\\\\\\ 2\pi\int\limits_0^{100}-2\sqrt{100-y}\cdot\sqrt{100-y}\cdot\sqrt{1+\dfrac{1}{4(100-y)}}\cdot\dfrac{dy}{-2\sqrt{100-y}}=\\\\\\

=2\pi\int\limits_0^{100}-2\big(100-y\big)\cdot\sqrt{1+\dfrac{1}{4(100-y)}}\cdot\left(-\dfrac{1}{2\sqrt{100-y}}\, dy\right)\stackrel{\bold{(1)}\bold{(2)}\bold{(3)}}{=}\\\\\\= \left|\begin{array}{c}x=\sqrt{100-y}\\\\x^2=100-y\\\\dx=-\dfrac{1}{2\sqrt{100-y}}\, \,dy\\\\a=0\implies a'=\sqrt{100-0}=10\\\\b=100\implies b'=\sqrt{100-100}=0\end{array}\right|=\\\\\\= 2\pi\int\limits_{10}^0-2x^2\cdot\sqrt{1+\dfrac{1}{4x^2}}\,\,dx=(\text{swap limits})=\\\\\\

=2\pi\int\limits_0^{10}2x^2\cdot\sqrt{1+\dfrac{1}{4x^2}}\,\,dx= 4\pi\int\limits_0^{10}\sqrt{x^4}\cdot\sqrt{1+\dfrac{1}{4x^2}}\,\,dx=\\\\\\= 4\pi\int\limits_0^{10}\sqrt{x^4+\dfrac{x^4}{4x^2}}\,\,dx= 4\pi\int\limits_0^{10}\sqrt{x^4+\dfrac{x^2}{4}}\,\,dx=\\\\\\= 4\pi\int\limits_0^{10}\sqrt{\dfrac{x^2}{4}\left(4x^2+1\right)}\,\,dx= 4\pi\int\limits_0^{10}\dfrac{x}{2}\sqrt{4x^2+1}\,\,dx=\\\\\\=\boxed{2\pi\int\limits_0^{10}x\sqrt{4x^2+1}\,dx}

Calculate indefinite integral:

\int x\sqrt{4x^2+1}\,dx=\int\sqrt{4x^2+1}\cdot x\,dx=\left|\begin{array}{c}t=4x^2+1\\\\dt=8x\,dx\\\\\dfrac{dt}{8}=x\,dx\end{array}\right|=\int\sqrt{t}\cdot\dfrac{dt}{8}=\\\\\\=\dfrac{1}{8}\int t^\frac{1}{2}\,dt=\dfrac{1}{8}\cdot\dfrac{t^{\frac{1}{2}+1}}{\frac{1}{2}+1}=\dfrac{1}{8}\cdot\dfrac{t^\frac{3}{2}}{\frac{3}{2}}=\dfrac{2}{8\cdot3}\cdot t^\frac{3}{2}=\boxed{\dfrac{1}{12}\left(4x^2+1\right)^\frac{3}{2}}

And the area:

A=2\pi\int\limits_0^{10}x\sqrt{4x^2+1}\,dx=2\pi\cdot\dfrac{1}{12}\bigg[\left(4x^2+1\right)^\frac{3}{2}\bigg]_0^{10}=\\\\\\= \dfrac{\pi}{6}\left[\big(4\cdot10^2+1\big)^\frac{3}{2}-\big(4\cdot0^2+1\big)^\frac{3}{2}\right]=\dfrac{\pi}{6}\Big(\big401^\frac{3}{2}-1^\frac{3}{2}\Big)=\boxed{\dfrac{401^\frac{3}{2}-1}{6}\pi}

Answer D.
6 0
4 years ago
Read 2 more answers
!PLEASE HELP QUICKLY, WILL GIVE BRAINLIEST! What is 1/3 ​ (−15+ 3/2)?
ololo11 [35]

Answer:

Step-by-step explanation:

-9/2

7 0
4 years ago
Read 2 more answers
Other questions:
  • Classifying the fruit in a basket as apple, orange, or banana, is an example of the ___________ level of measurement?
    15·2 answers
  • Claire cut some apples into eighths. She and her friends ate all but 17 pieces. How many whole apples and parts of apples did sh
    14·2 answers
  • What is the greatest number of teams can be formed that have the same amount of boys and girls on each team if they have 54 girl
    11·1 answer
  • For the last 4.5 hours, the temperature has decreased at a rate of 2.8 Degrees Fahrenheit per hour. Which best represents the ov
    15·2 answers
  • Kara has 21 collectible buttons to sell. She sells the small buttons for $3 and the large buttons for $4, and earns a total of $
    9·1 answer
  • Find m angle TUV if m angle TUN=1+38 pi m angle NUV=66^ m angle TUV=105x
    11·1 answer
  • Factor thé expression 27b+24
    10·1 answer
  • SOME ONE ANSWER ASAP PLSSSsss
    12·2 answers
  • Which is the graph of the equation y- 1= 5(x-3)?
    6·1 answer
  • Solve the system of linear equations by graphing.
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!