Answer:
200000J
Explanation:
Here the 1000N÷m is given. It is the torque. Now torque is a type of force created when an object turns.so it is a force.
100kg crate is the mass of the object.
2m is the height.
So the equation to measure gravitational pot. Enrg. Is = mass x force x height
So 1000x100x2 gives us 200000J.
Thank you
If you have any questions please feel free to contact me.
I will contact u through the comments.
❤️❤️With love,
Joel X grader
Power can be defined as the rate at which work is accomplished.
Option D is the correct answer.
<h3>
</h3><h3>
Power </h3>
The work done by an object in a given time interval is called the power of that object.
Suppose an external force F is applied to any object for the time interval T seconds. Due to this external force, the object will perform some amount of work for the time T seconds. This work W done by the object for the time interval T seconds is called the power of that object.
Power can be defined in mathematical term which is given below.

Thus the power can also be defined as the work done by the object per unit time interval.
Hence we can conclude that option D is the correct answer.
To know more about power, follow the link given below.
brainly.com/question/1618040.
Answer:
Explanation:
The cannonball goes a horizontal distance of 275 m . It travels a vertical distance of 100 m
Time taken to cover vertical distance = t ,
Initial velocity u = 0
distance s = 100 m
acceleration a = 9.8 m /s²
s = ut + 1/2 g t²
100 = .5 x 9.8 x t²
t = 4.51 s
During this time it travels horizontally also uniformly so
horizontal velocity Vx = horizontal displacement / time
= 275 / 4.51 = 60.97 m /s
Vertical velocity Vy
Vy = u + gt
= 0 + 9.8 x 4.51
= 44.2 m /s
Resultant velocity
V = √ ( 44.2² + 60.97² )
= √ ( 1953.64 + 3717.34 )
= 75.3 m /s
Angle with horizontal Ф
TanФ = Vy / Vx
= 44.2 / 60.97
= .725
Ф = 36⁰ .
To solve this problem we will apply the concepts related to Ohm's law and Electric Power. By Ohm's law we know that resistance is equivalent to,

Here,
V = Voltage
I = Current
While the power is equivalent to the product between the current and the voltage, thus solving for the current we have,


Applying Ohm's law


Therefore the equivalent resistance of the light string is 