Answer:
0.337 is the probability that a randomly selected such woman has cholesterol level between 200 and 240 mg/dl.
Step-by-step explanation:
We are given the following information in the question:
Mean, μ = 212
Standard Deviation, σ = 45.2
We are given that the distribution of level of cholesterol is a bell shaped distribution that is a normal distribution.
Formula:
![z_{score} = \displaystyle\frac{x-\mu}{\sigma}](https://tex.z-dn.net/?f=z_%7Bscore%7D%20%3D%20%5Cdisplaystyle%5Cfrac%7Bx-%5Cmu%7D%7B%5Csigma%7D)
P(cholesterol level between 200 and 240 )
![P(200 \leq x \leq 240)\\\\ = P(\displaystyle\frac{200 - 212}{45.2} \leq z \leq \displaystyle\frac{240-212}{45.2}) \\\\= P(-0.2654 \leq z \leq 0.6194)\\\\= P(z \leq 0.6194) - P(z < -0.2654)\\= 0.732 - 0.395 = 0.337 = 33.7\%](https://tex.z-dn.net/?f=P%28200%20%5Cleq%20x%20%5Cleq%20240%29%5C%5C%5C%5C%20%3D%20P%28%5Cdisplaystyle%5Cfrac%7B200%20-%20212%7D%7B45.2%7D%20%5Cleq%20z%20%5Cleq%20%5Cdisplaystyle%5Cfrac%7B240-212%7D%7B45.2%7D%29%20%5C%5C%5C%5C%3D%20P%28-0.2654%20%5Cleq%20z%20%5Cleq%200.6194%29%5C%5C%5C%5C%3D%20P%28z%20%5Cleq%200.6194%29%20-%20P%28z%20%3C%20-0.2654%29%5C%5C%3D%200.732%20-%200.395%20%3D%200.337%20%3D%2033.7%5C%25)
![P(200 \leq x \leq 240) = 33.7\%](https://tex.z-dn.net/?f=P%28200%20%5Cleq%20x%20%5Cleq%20240%29%20%3D%2033.7%5C%25)
0.337 is the probability that a randomly selected such woman has cholesterol level between 200 and 240 mg/dl.