Answer:
Explanation:
molar mass of BaCl2 = 208.23
mol of BaCl2 = 8/208.22
mol of BaCl2 = 0.03841905
Molarity = 0.03841905/0.450
Molarity = 0.085 M
Answer:
Al + 4AgNO3 >>Al(NO3)3+ 3Ag
Explanation:
the number of moles of No3 of the products is 3 therefore we have to balance the reactants by adding 3 before the "AgNO3" which also leades us to adding 3 mols to Ag on the products side
Answer:
1218.585
Explanation:
Looking at the subscripts we know there are 2 atoms of Fe, 3 atoms of C, and 6 of O.
Take the molar mass of each atom (from the periodic table) and multiply by the # of atoms
Fe: 55.845×2= 111.69
C: 12.011×3= 36.033
O:15.999×6=95.994
Add the values together: 243.717 g/mol
That is 1 mole of the molecule. Multiply by 5 for the final answer.
243.717×5=1218.585
Answer:
#Molecules XeF₆ = 2.75 x 10²³ molecules XeF₆.
Explanation:
Given … Excess Xe + 12.9L F₂ @298K & 2.6Atm => ? molecules XeF₆
1. Convert 12.9L 298K & 2.6Atm to STP conditions so 22.4L/mole can be used to determine moles of F₂ used.
=> V(F₂ @ STP) = 12.6L(273K/298K)(2.6Atm/1.0Atm) = 30.7L F₂ @ STP
2. Calculate moles of F₂ used
=> moles F₂ = 30.7L/22.4L/mole = 1.372 mole F₂ used
3. Calculate moles of XeF₆ produced from reaction ratios …
Xe + 3F₂ => XeF₆ => moles of XeF₆ = ⅓(moles F₂) = ⅓(1.372) moles XeF₆ = 0.4572 mole XeF₆
4. Calculate number molecules XeF₆ by multiplying by Avogadro’s Number (6.02 x 10²³ molecules/mole)
=> #Molecules XeF₆ = 0.4572mole(6.02 x 10²³ molecules/mole)
= 2.75 x 10²³ molecules XeF₆.
Answer:
114mL.
Explanation: hope this helped