1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
nasty-shy [4]
3 years ago
10

A process involves the removal of oil and other liquid contaminants from metal parts using a heat-treat oven, which has a volume

of 15,000 ft3. The oven is free of solvent vapors. The ventilation rate of the oven is 2,100 cfm, and the safety factor (K) is 3. The solvent used in the process evaporates at a rate of 0.6 cfm (cubic feet per minute). The operator would like to know how long it would take the concentration to reach 425 ppm.
Engineering
1 answer:
Aleks [24]3 years ago
7 0

Answer:

time = 4.89 min

Explanation:

given data

volume = 15,000 ft³

ventilation rate of oven = 2,100 cubic feet per minute

safety factor (K) = 3

evaporates at a rate = 0.6 cubic feet per minute

solution

we get here first solvent additional rate in oven that is

solvent additional rate = \frac{0.6}{1500}

solvent additional rate = 4 × 10^{-5} min

solvent additional rate == 4 × 10^{-5} × 10^{6}

solvent additional rate =  40 ppm/min

and

solvent removal rate due to ventilation will be

removal rate = \frac{2100}{1500} × concentration in ppm

removal rate = 0.14 C  ppm/min

and

net additional rate is

net additional rate (c) = m - r

so net additional rate (c) is = 40 - 0.14C

so here

\frac{dc}{dt} = 40 - 0.14C

so take integrate from 0 to t

\int\limits^t_o {dt} = \int\limits^{425/3}_0 \frac{dc}{40-0.14C}    ....................1

here factor of safety is 3 so time taken is \frac{425}{3}  

solve it we get

time = [\frac{-50}{7} \ log(40-\frac{7c}{50}  ]^{425/3} _0

time = 4.89 min

You might be interested in
Consider the freeway in Problem 1. At one point along this freeway there is a 4% upgrade with a directional hourly traffic volum
ryzh [129]

Answer:

The Question is incomplete, the complete question is as follows:

<em>Consider the freeway in Problem 1. At one point along this freeway there is a 4% upgrade with a directional hourly traffic volume of 5,435 vehicles. If all other conditions are as described in Problem 1, how long can this grade be without the freeway LOS dropping to F? </em>

A six-lane rural freeway (three lanes in each direction) has regular weekday users and currently operates at maximum LOS C conditions. The base free-flow speed is 65 mi/h, lanes are 11 ft wide, the right-side shoulder is 4 ft wide, and the interchange density is 0.25 per mile. The highway is one rolling terrain with 10% large trucks and buses (no recreational vehicles), and the peak-hour factor is 0.90. Determine the hourly volume for these conditions

Explanation:

<em>Make the assumption Base continuous flow velocity (BFFS)= 65 mph. </em>

Pitch width= 11 ft.

Decrease in lane width pace,fLW= 1.9 mph.

Complete Lateral clearance= 4 ft. Lateral clearance speed reduction, fLC= 0.8 mph.

Complete Width of the Ramp= 0.25 mile.

Velocity reduction proportional to the ramp height, f ID= 0 mph.

Assume lane number to be = 3.

Reduction in speed corresponding to no. of lanes, fN = 3 mph

Free Flow Speed (FFS) = BFFS – fLW – fLC – fN – fID = 65 – 1.9 – 0.8 – 3 – 0 = 59.3 mph

Peak Flow, V veh/hr

Peak-hour factor = 0.90

Trucks = 10%

Rolling Terrain

fHV = 1/ (1 + 0.10 (2.5-1)) = 1/1.15 = 0.8696

fP = 1.0

Peak Flow Rate, Vp = V / (PHV*n*fHV*fP) = V/ (0.90*3*0.8696*1.0) = 0.426V veh/hr/ln

Average speed of vehicles, S = FFS = 59.3 mph

Level of service C

Density of LOS C lies between 18 - 25 veh/mi/ln

Maximum density = 25 veh/mi/ln

Density = V​​​​​​p /S = 25

0.426V = 25 * 59.3

V = 3480 veh/hr

b) V = 5435 veh/hr

LOS dropping to F

Max density = 45 veh/mi/ln

Density = Vp/S = 45

V​​​​​​p = 45 * 59.3 = 2668.5 veh/hr/ln

V/(PHF * n * f​​​​​​HV * f​​​​​​P​​​) = 2668.5

f​​​​​​HV = 5435/(0.9*3*2668.5*1.0) = 0.754

1/(1+0.10 (E​​​​​​T -1)) = 0.754

E​​​​​​T = 4.26 ~ 3.5

<em>For 4% upgrade and 10% trucks with E​​​​​​T = 3.5, length of the grade is Greater than 1.0 miles</em>

6 0
3 years ago
Read 2 more answers
Technician A says test lights are great for performing simple tests. Technician B says you can use a test light to check SRS cir
adoni [48]

The technician that is correct about either testing lights for simple tests or to check SRS Circuits is; Technician A.

<h3>Which Technician is Correct?</h3>

First of all it is pertinent to note that test lights are generally small bulbs that are turned on by the voltage and current flowing through the circuit in analog circuits.

Now, the  two values ​​of voltage and current are high and sufficient to light up the bulb. However, in digital circuits, the current is very small in the order of milliamps, and as a result there is not enough power to turn on the lights.

Thus, we can conclude that Technician A is correct.

Read more about Correct Technician at; brainly.com/question/14449935

5 0
2 years ago
A 20.0 µF capacitor is charged to a potential difference of 800 V. The terminals of the charged capacitor are then connected to
Sergeu [11.5K]

Answer:

a) Q_initial = 16 * 10^-3 C

b) V_1 = V_2 =  (16/3) * 10^2 V

c)  E = 64/15 J

d)  dE = 32/15 J of decrease

Explanation:

Given:

- Capacitor 1, C_1 = 20.0 uF

- Capacitor 2, C_2 = 10.0 uF

- Charged with P.d V = 800 V

Find:

a) the original charge of the system,

(b) the final potential difference across each capacitor

(c) the final energy of the system

(d) the decrease in energy when the capacitors are connected.

Solution:

a)

- The initial charge in the circuit is the one carried by the first charged capacitor.

                           Q_initial = C_1*V

                           Q_initial = 20*10^-6 * 800

                           Q_initial = 16 * 10^-3 C

b)

- After charging the other capacitor, we know that the total charge is conserved among two capacitor:

                          Q_initial = Q_1 + Q_2

- We also know that potential difference across two capacitor is also same.

                          V_1 = V_2 = Q_1 / C_1 = Q_2 / C_2

- Using the two equations and solve for charge Q_2:

                          Q_2 = Q_1*C_2/C_1

                          Q_2 = Q_1*10/20 = 0.5*Q_1

- using conservation of charge:

                          Q_initial = 1.5*Q_1

                          Q_1 = 16*10^-3 / 1.5 = 10.67*10^-3 C

- Hence the Voltage across each capacitor is:

                          V_2 = V_1 = Q_1 / C_1  

                                            = 10.67*10^-3 / 20*10^-6

                                            = (16/3) * 10^2 V

c)

- The energy in the system is:

                          E = 0.5*C_eq*V^2

Where, C_eq is the equivalent capacitance of paralle circuit.

                           E = 0.5*(20+10)*10^-6 *((16/3) * 10^2)^2

                          E = 64/15 J

d)

- The decrease in energy of the capacitors is:

                           dE = E_initial - E_final

Where, E_initial is due to charging of the C_1 only:

                          dE = 0.5*10^-6*20*800^2 - (64/15)

                          dE = 32/5 - 64/15 = 32/15 J

5 0
3 years ago
All brake lights are dimmer than normal. Technician A says that bad bulbs could be the cause. Technician B says that high resist
yarga [219]

Answer:

All Brake lights are dimmer than normal because high resistance in the brake switch could be the cause according to Technician B.

Explanation:

According to Technician A

When the bulb is faulty then no current will flow through bulb and it will be open circuit.So no light will produce in bulb .

According to Technician B

When a high resistance inserted in series  circuit the voltage across each resistance is reduced and this cause the light glow dimly.

Formula of resistance in series circuit

Rt=r1+r2+r3......

5 0
3 years ago
A steel bar 100 mm (4.0 in.) long and having a square cross section 20 mm (0.8 in.) on an edge is pulled intension with a load o
grigory [225]

Answer:

The elastic modulus of the steel is 139062.5 N/in^2

Explanation:

Elastic modulus = stress ÷ strain

Load = 89,000 N

Area of square cross section of the steel bar = (0.8 in)^2 = 0.64 in^2

Stress = load/area = 89,000/0.64 = 139.0625 N/in^2

Length of steel bar = 4 in

Extension = 4×10^-3 in

Strain = extension/length = 4×10^-3/4 = 1×10^-3

Elastic modulus = 139.0625 N/in^2 ÷ 1×10^-3 = 139062.5 N/in^2

7 0
3 years ago
Other questions:
  • What is the major drawback in nanocrystalline alloys? a)- high brittleness b)-low hardness c)-rapid grain growth upon heating d)
    9·1 answer
  • The nameplate on a 70 kVA transformer shows a primary voltage of 480 volts and a secondary voltage of 115 volts. We wish to dete
    10·1 answer
  • For some transformation having kinetics that obey the Avrami equation , the parameter n is known to have a value of 1.1. If, aft
    6·1 answer
  • Two blocks of rubber with a modulus of rigidity G =10 MPa are bonded to rigid supports and to a plate AB. Knowing that b = 200 m
    8·1 answer
  • A water tower that is 90 ft high provides water to a residential subdivision. The water main from the tower to the subdivision i
    10·1 answer
  • (TCO 1) Name one disadvantage of fixed-configuration switches over modular switches. a. Ease of management b. Port security b. F
    6·1 answer
  • An automobile having a mass of 1100 kg initially moves along a level highway at 110 km/h relative to the highway. It then climbs
    7·1 answer
  • In the construction of a large reactor pressure vessel, a new steel alloy with a plane strain fracture toughness of 55 MPa-m1/2
    7·1 answer
  • Nitrogen (N2) enters an insulated compressor operating at steady state at 1 bar, 378C with a mass flow rate of 1000 kg/h and exi
    8·1 answer
  • 4.6. What is the maximum peak output voltage and current if the supply voltages are changed to +15 V and -15 V.​
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!