Answer:
116.3 electrons
Explanation:
Data provided in the question:
Time, t = 2.55 ps = 2.55 × 10⁻¹² s
Current, i = 7.3 μA = 7.3 × 10⁻⁶ A
Now,
we know,
Charge, Q = it
thus,
Q = (7.3 × 10⁻⁶) × (2.55 × 10⁻¹²)
or
Q = 18.615 × 10⁻¹⁸ C
Also,
We know
Charge of 1 electron, q = 1.6 × 10⁻¹⁹ C
Therefore,
Number of electrons past a fixed point = Q ÷ q
= [ 18.615 × 10⁻¹⁸ ] ÷ [ 1.6 × 10⁻¹⁹ ]
= 116.3 electrons
Answer:
See explaination
Explanation:
This is going to require diagrams, please kindly see attachment for the detailed step by step solution of the given problem.
Answer:
R= 1.25
Explanation:
As given the local heat transfer,

But we know as well that,

Replacing the values

Reynolds number is define as,

Where V is the velocity of the fluid and \upsilon is the Kinematic viscosity
Then replacing we have



<em>*Note that A is just a 'summary' of all of that constat there.</em>
<em>That is
</em>
Therefore at x=L the local convection heat transfer coefficient is

Definen that we need to find the average convection heat transfer coefficient in the entire plate lenght, so

The ratio of the average heat transfer coefficient over the entire plate to the local convection heat transfer coefficient is
