1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
motikmotik
3 years ago
15

A generator operating at 50 Hz delivers 1 pu power to an infinite bus through a transmission circuit in which resistance is igno

red. A fault takes place reducing the maximum power transferable to 0.5 pu whereas before the fault, this power was 2.0 pu and after the clearance of the fault, it is 1.5 pu. Using equal area criterion, determine the critical clearing angle.

Engineering
1 answer:
olga55 [171]3 years ago
3 0

Answer:

critical clearing angle = 70.3°

Explanation:

Generator operating at = 50 Hz

power delivered = 1 pu

power transferable when there is a fault = 0.5 pu

power transferable before there is a fault = 2.0 pu

power transferable after fault clearance = 1.5 pu

using equal area criterion to determine the critical clearing angle

Attached is the power angle curve diagram and the remaining part of the solution.

The power angle curve is given as

= Pmax sinβ

therefore :  2sinβo = Pm

                   2sinβo = 1

                   sinβo = 0.5 pu

                   βo = sin^{-1} (0.5) = 30⁰

also ;   1.5sinβ1 = 1

               sinβ1 = 1/1.5

               β1 = sin^{-1} (\frac{1}{1.5} ) = 41.81⁰

∴ βmax = 180 - 41.81  = 138.19⁰

attached is the remaining solution

The critical clearing angle = cos^{-1} 0.3372  ≈ 70.3⁰

You might be interested in
A steam reformer operating at 650C and 1 atm uses propane as fuel for hydrogen production. At the given operating conditions, th
dusya [7]

Answer:

Explanation:

a) for shifting reactions,

Kps =  ph2 pco2/pcoph20

=[h2] [co2]/[co] [h2o]

h2 + co2 + h2O + co + c3H8 = 1

it implies that

H2 + 0.09 + H2O + 0.08 + 0.05 = 1

solving the system of equation yields

H2 = 0.5308,

H2O = 0.2942

B)  according to Le chatelain's principle for a slightly exothermic reaction, an increase in temperature favors the reverse reaction producing less hydrogen. As a result, concentration of hydrogen in the reformation decreases with an increasing temperature.

c) to calculate the maximum hydrogen yield , both reaction must be complete

C3H8 + 3H2O ⇒ 3CO + 7H2( REFORMING)

CO + H2O ⇒ CO2 + H2 ( SHIFTING)

C3H8 + 6H2O ⇒ 3CO2 + 10 H2 ( OVER ALL)

SO,

Maximum hydrogen yield

= 10mol h2/3 molco2 + 10molh2

= 0.77

⇒ 77%

3 0
3 years ago
Cómo se llama el componente, que permite abrir o cerrar un circuito eléctrico
Korolek [52]
Creo haber leído sobre esto..Un “interruptor” yo diría
5 0
3 years ago
-Electronic control modules can easily evaluate the voltage and current levels of circuits to which they are connected and deter
erma4kov [3.2K]

Answer:

multiplexing

Explanation:

3 0
3 years ago
For the same cross-sectional area, which column provides the higher buckling load: a circular bar or a circular tube?
juin [17]

Answer:

Circular tube

Explanation:

Now for better understanding lets take an example

Lets take

Diameter of solid bar= 4\sqrt{2} cm

Outer diameter of tube =6 cm

Inner diameter of tube=2 cm

So from we can say that both tubes have equal cross sectional area.

We know that buckling load is given as P = \dfrac{\pi ^2EI}{L_e^2}      

If area moment of inertia(I) is high then buckling load will be high.

We know that  area moment of inertia(I)

For circular tube I = \dfrac{\pi }{64}(D_o^4-D_i^4)

For circular bar I = \dfrac{\pi }{64}D^4  

Now by putting the values

    For circular tube I=62.83 cm^4

  For circular bar I=50.26 cm^4

So we can say that for same cross sectional area the  area moment of inertia(I) is high for tube as compare to bar.So buckling load  will be higher in tube as compare to bar.

3 0
3 years ago
The following electrical characteristics have been determined for both intrinsic and p-type extrinsic gallium antimonide (GaSb)
xxTIMURxx [149]

Answer:

0.5m^2/Vs and 0.14m^2/Vs

Explanation:

To calculate the mobility of electron and mobility of hole for gallium antimonide we have,

\sigma = n|e|\mu_e+p|e|\mu_h (S)

Where

e= charge of electron

n= number of electrons

p= number of holes

\mu_e= mobility of electron

\mu_h=mobility of holes

\sigma = electrical conductivity

Making the substitution in (S)

Mobility of electron

8.9*10^4=(8.7*10^{23}*(-1.602*10^{-19})*\mu_e)+(8.7*10^{23}*(-1.602*10^{-19})*\mu_h)

0.639=\mu_e+\mu_h

Mobility of hole in (S)

2.3*10^5 = (7.6*10^{22}*(-1.602*10^{-19})*\mu_e)+(1*10^{25}*(-1.602*10^{-19}*\mu_h))

0.1436 = 7.6*10^{-3}\mu_e+\mu_h

Then, solving the equation:

0.639=\mu_e+\mu_h (1)

0.1436 = 7.6*10^{-3}\mu_e+\mu_h (2)

We have,

Mobility of electron \mu_e = 0.5m^2/V.s

Mobility of hole is \mu_h = 0.14m^2/V.s

6 0
3 years ago
Other questions:
  • The flowchart below shows the design steps required to build a working model.
    6·1 answer
  • The working section of a transonic wind tunnel has a cross-sectional area 0.5 m2. Upstream, where the cross-section area is 2 m2
    10·1 answer
  • Which of the following has nothing to do with insulating glass? Group of answer choices
    10·2 answers
  • 2. In the above figure, what type of cylinder arrangement is shown in the figure above?
    9·2 answers
  • If you are in a tornado situation, which of the following actions would put you in danger?
    11·1 answer
  • If 3 varies inversely as x and y=2 when x=25, find x when y=40
    7·1 answer
  • A manager who focuses on the employees who enable a company to do business is human resource management. True True False False
    7·1 answer
  • PLEASE HELP WITH THIS ASAP! Thanks
    6·1 answer
  • Air enters a compressor operating at steady state at 1.05 bar, 300 K, with a volumetric flow rate of 21 m3/min and exits at 12 b
    11·1 answer
  • What is the best way to collaborate with your team when publishing Instagram Stories from Hootsuite?
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!