Answer:
modulus =3.97X10^6 Ib/in^2, Poisson's ratio = 0.048
Explanation:
Modulus is the ratio of tensile stress to tensile strain
Poisson's ratio is the ratio of transverse contraction strain to longitudinal extension strain within the direction of the stretching force
And contraction occur from 0.6 in x 0.6 in to 0.599 in x 0.599 in while 2 in extended to 2.007, with extension of 0.007 in
Answer:
il(t) = e^(-100t)
Explanation:
The current from the source when the switch is closed is the current through an equivalent load of 15 + 50║50 = 15+25 = 40 ohms. That is, it is 80/40 = 2 amperes. That current is split evenly between the two parallel 50-ohm resistors, so the initial inductor current is 2/2 = 1 ampere.
The time constant is L/R = 0.20/20 = 0.01 seconds. Then the decaying current is described by ...
il(t) = e^(-t/.01)
il(t) = e^(-100t) . . . amperes
Answer:
The sentence excerpted from the e-mail uses passive voice.
Given the purpose of your message, this voice is appropriate.
Explanation:
Because the objective is to remedy the situation a passive voice is great because it emphasizes the action and the object instead of the subject.
We want to emphasize the document and the incorrect information, not our colleague.
Answer:
S = 5.7209 M
Explanation:
Given data:
B = 20.1 m
conductivity ( K ) = 14.9 m/day
Storativity ( s ) = 0.0051
1 gpm = 5.451 m^3/day
calculate the Transmissibility ( T ) = K * B
= 14.9 * 20.1 = 299.5 m^2/day
Note :
t = 1
U = ( r^2* S ) / (4*T*<em> t </em>)
= ( 7^2 * 0.0051 ) / ( 4 * 299.5 * 1 ) = 2.0859 * 10^-4
Applying the thesis method
W(u) = -0.5772 - In(U)
= 7.9
next we calculate the pumping rate from well ( Q ) in m^3/day
= 500 * 5.451 m^3 /day
= 2725.5 m^3 /day
Finally calculate the drawdown at a distance of 7.0 m form the well after 1 day of pumping
S =
where : Q = 2725.5
T = 299.5
W(u) = 7.9
substitute the given values into equation above
S = 5.7209 M