D is the answer. Hope this helped
Answer:
We can compute the diameter of the tree T by a pruning procedure, starting at the leaves (external nodes).
- Remove all leaves of T. Let the remaining tree be T1.
-
Remove all leaves of T1. Let the remaining tree be T2.
-
Repeat the "remove" operation as follows: Remove all leaves of Ti. Let remaining tree be Ti+1.
-
When the remaining tree has only one node or two nodes, stop! Suppose now the remaining tree is Tk.
-
If Tk has only one node, that is the center of T. The diameter of T is 2k.
-
If Tk has two nodes, either can be the center of T. The diameter of T is 2k+1.
Explanation:
We can compute the diameter of the tree T by a pruning procedure, starting at the leaves (external nodes).
- Remove all leaves of T. Let the remaining tree be T1.
-
Remove all leaves of T1. Let the remaining tree be T2.
-
Repeat the "remove" operation as follows: Remove all leaves of Ti. Let remaining tree be Ti+1.
-
When the remaining tree has only one node or two nodes, stop! Suppose now the remaining tree is Tk.
-
If Tk has only one node, that is the center of T. The diameter of T is 2k.
-
If Tk has two nodes, either can be the center of T. The diameter of T is 2k+1.
B is the answer I believe so
Answer:
Compute the number of gold atoms per cubic centimeter = 9.052 x 10^21 atoms/cm3
Explanation:
The step by step and appropriate substitution is as shown in the attachment.
From number of moles = Concentration x volume
number of moles = number of particles/ Avogadro's number
Volume = mass/density, the appropriate derivation to get the number of moles of atoms