----------------------------------------------------------------
Define x and y:
----------------------------------------------------------------
Let the length be x.
Let the width be y.
----------------------------------------------------------------
Formula:
----------------------------------------------------------------
Perimeter = 2(Length + Width)
----------------------------------------------------------------
Construct equations and solve for x and y:
----------------------------------------------------------------
2x + 2y = 56 ---------------------- (1)
2(x+8) + 4y = 82 -----------------------(2)
----------------------------------------------------------------
From equation 1:
----------------------------------------------------------------
2x + 2y = 56
x + y = 28
x = 28 - y
----------------------------------------------------------------
From equation 2:
----------------------------------------------------------------
2(x+8) + 4y = 82
2x + 16 + 4y = 82
2x + 4y = 66
x + 2y = 33
----------------------------------------------------------------
Substitute x = 28 - y into equation 2:
----------------------------------------------------------------
x + 2y = 33
(28 - y) + 2y = 33
28 - y + 2y = 33
y = 5
----------------------------------------------------------------
Substitute y = 5 into equation 1:
----------------------------------------------------------------
x = 28 - y
x = 28 - 5
x = 23
----------------------------------------------------------------
Find Length and Width
----------------------------------------------------------------
Length = x = 23 m
Width = y = 5m
----------------------------------------------------------------
Answer: Length = 23m and Width = 5m
----------------------------------------------------------------
The answer to your question is 6 percent because you have to subtract
Answer:
A) A dilation by a scale factor of 2, centered at the origin, followed by a 180° clockwise rotation about the origin.
Step-by-step explanation:
a dilation by a scale factor of 2, centered at the origin will double its size and move point A from (-2,2) to (-4,4). Then the clockwise rotation of 180° degrees will rotate the figure so that it's point A (now called point D) will be at (4,-4).