Explanation:
Mg(s) + Cr(C2H3O2)3 (aq)
Overall, balanced molecular equation
Mg(s) + Cr(C2H3O2)3(aq) --> Mg(C2H3O2)3(aq) + Cr(s)
To identify if an element has been reduced or oxidized, the oxidation number is observed in both the reactant and product phase.
An increase in oxidation number denotes that the element has been oxidized.
A decrease in oxidation number denotes that the element has been reduced.
Oxidation number of Mg:
Reactant - 0
Product - +3
Oxidation number of Cr:
Reactant - +3
Product - 0
Note: C2H3O2 is actually acetate ion; CH3COO- The oxidatioon number of C, H and O do not change.
Oxidized : Mg
Reduced : Cr
1.1214 mL will a 0.205-mole sample of He occupy at 3.00 atm and 200 K.
<h3>What is an ideal gas equation?</h3>
The ideal gas law (PV = nRT) relates the macroscopic properties of ideal gases. An ideal gas is a gas in which the particles (a) do not attract or repel one another and (b) take up no space (have no volume).
Using equation PV=nRT, where n is the moles and R is the gas constant. Then divide the given mass by the number of moles to get molar mass.
Given data:
P= 3.00 atm
V= ?
n=0.205 mole
R= 
T=200 K
Putting value in the given equation:


V= 1.1214 mL
Learn more about the ideal gas here:
brainly.com/question/27691721
#SPJ1
Answer : The amount of formaldehyde permissible are, 
Explanation : Given,
Density of air =

First we have to calculate the mass of air.



Now we have to calculate the amount of formaldehyde.
Permissible exposure level of formaldehyde = 0.75 ppm = 
Amount of formaldehyde in 7.2 g of formaldehyde = 
Amount of formaldehyde in 7.2 g of formaldehyde = 
Thus, the amount of formaldehyde permissible are, 