<u>61.25 grams</u> of CO can be formed from 35 grams of oxygen.
The molecular mass of oxygen is <u>16 gmol⁻¹</u>
The molecular mass of carbon monoxide is<u> 28 gmol⁻¹</u>
Explanation:
The molar mass of carbon monoxide is molar mass of C added to that of O;
12 + 16 = 28
= 28g/mol
The molar mass of oxygen is 16 g/mol while that of oxygen gas (O₂) is 32 g/mol
Since the ration oxygen to carbon monoxide is 1: 2 moles, we begin to find out how many moles of carbon monoxide are formed by 35 g of oxygen;
35/32 * 2
= 70/32 moles
Then multiply by the molar mass of carbon monoxide;
70/32 * 28
= 61.25 g
11.0 kg = (11.0 kg)(1000 g/kg) = 11000 g
(11000 g)/(1400 cm3) = 7.857 g/cm3
Simplified = 7.86 g/cm3
A scientific theory is a well tested explanation of a natural phenomenon.
Answer:
The answer is 0.844/10 minutes
Explanation:
You have an enzyme that catalizes a reaction which gives a product that can be quantified by an absorbance measurement. The more reaction time, the more product quantity and higher absorbance.
The rate of the reaction is the change in products quantity per time unit. As you are using the absorbance as a measure of the product quantity, you can calculate the rate as the change in absorbance (ΔA) per time (in minutes) as follows:
rate= ΔA/time
rate= (final absorbance - initial absorbance) /minutes
rate= (0.444-0.022)/5 min
rate= 0.422/5 min
In 10 minutes will be :
rate= 0.844/10 min
Commonly, a rate is the relation between two quantities measured in different units. For example, the speed of a car is the change in meters (traveled distance) per time (m/s or km/h). For an enzyme, is the same (quantity of product/time).
A control group is the group in an experiment that does not receive any sort of change, to then be compared to the other treated objects at the end of the study.