Answer:
F = 2.6692 x 10⁻⁹ N
Explanation:
Given,
The mass of the rock, m = 10 kg
The mass of the boulder, M = 100 kg
The distance between them, d = 5 m
The gravitational force between the two bodies is proportional to the product of their masses and inversely proportional to the square of the distance between them. It is given by the formula
<em> F = GMm/d² newton</em>
Where,
G - Universal gravitational constant
Substituting the given values,
F = 6.673 x 10⁻¹¹ x 100 x 10 / 5²
F = 2.6692 X 10⁻⁹ N
Hence, the force between the two bodies is, F = 2.6692 X 10⁻⁹ N
The current will decrease as the resistance has now increased, meaning less current will be 'let through' the resistor. (assuming it's in series, there's no image)
Answer:
1.82 rad/s².
Explanation:
Applying,
α = (ω₂-ω₁)/t..................... Equation 1
Where α = angular acceleration of the fan blades, ω₂ = final angular velocity of the fan blades, ω₁ = initial angular velocity of the fan blades, t = time.
Given: ω₂ = 350 rpm = (350×0.1047) rad/s = 36.645 rad/s. ω₁ = 250 rpm = (250×0.1047) rad/s = 26.175 rad/s, t = 5.75 s.
Substitute into equation 1
α = (36.645-26.175)/5.75
α = 10.47/5.75
α = 1.82 rad/s².
Hence the magnitude of the angular acceleration of the fan blades = 1.82 rad/s²
Humberto should expect to see that all bulbs in circuit 1 will shine more dimly than the original bulbs, while all bulbs in circuit 2 will have the same brightness as the original bulbs.
B) All bulbs in circuit 1 will shine more dimly than the original bulbs, while all bulbs in circuit 2 will have the same brightness as the original bulbs.
Answer:
a) 351351.35m/s
b) 1.044*10^{-8}kg/C
Explanation:
a) Electric force and magnetic force over the charge must have the same magnitude. From there we can compute the seep of the charge.

b) the mass-charge ratio is given by:

hope this helps!!