1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Aleks04 [339]
3 years ago
8

A certain copper wire has a resistance of 13.0 Ω . At some point along its length the wire was cut so that the resistance of one

piece is 7.0 times the resistance of the other
Determine the length of the short piece.(% of length of the wire)?
Determine the resistance of the short piece?
Determine the resistance of the long piece?
Physics
1 answer:
alekssr [168]3 years ago
8 0

Answer with Explanation:

Let r be the resistance of short piece of copper wire.

Resistance of copper wire=R=13\Omega

Resistance is directly proportional to length.

If a wire has greater resistance then,the wire will be greater in length.

Therefore,resistance of long piece of wire=7r

Total resistance of copper  wire=Sum of resistance of two piece of wires

r+7r=13

8r=13

r=\frac{13}{8}ohm

Resistance of long piece of wire=7\times\frac{13}{8}=\frac{91}{8}\Omega

Resistance of short piece of wire =\frac{13}{8}\Omega

Resistivity of wire and cross section area of wire remains same .

Let L be the total  length  of wire and L' be the length of short  piece of wire.

We know that

R=\frac{\rho L}{A}=\frac{\rho}{A}L=KL

\frac{R}{L}=K

Where K=\frac{\rho}{A}=Constant

Using the formula

\frac{13}{L}=\frac{\frac{13}{8}}{L'}

\frac{L'}{L}=\frac{13}{8}\times \frac{1}{13}=\frac{1}{8}

L'=\frac{L}{8}

Length of short piece of wire=L'=\frac{L}{8}

Length of long piece of  wire=L-L'=L-\frac{L}{8}=\frac{8L-L}{8}=\frac{7}{8}L

% of length of short piece of   wire=\frac{\frac{L}{8}}{L}\times 100=12.5%%

The resistance of the short piece=\frac{13}{8}\Omega

The resistance of the long piece=\frac{91}{8}\Omega

You might be interested in
A hunter on a frozen, essentially frictionless pond uses a rifle that shoots 4.20g bullets at 965m/s. the mass of the hunter (in
weqwewe [10]

When the gun is fired horizontally :

m = mass of each bullet = 4.20 g = 0.0042 kg

v = velocity of the bullet after fire = 965 m/s

M = mass of the hunter including gun  = 72.5 kg

V = velocity of hunter including gun after fire = ?

V' = velocity of the combination of bullet , gun and hunter before fire = 0 m/s

Using conservation of momentum

m v + M V = (m + M) V'

(0.0042) (965) + (72.5) V = (0.0042 + 72.5) (0)

V = - 0.056 m/s

so recoil velocity comes out to be 0.056 m/s



When the gun is fired at angle 56.0⁰ above the horizontal :

m = mass of each bullet = 4.20 g = 0.0042 kg

v = velocity of the bullet after fire = 965 Cos56 = 539.62 m/s

M = mass of the hunter including gun  = 72.5 kg

V = velocity of hunter including gun after fire = ?

V' = velocity of the combination of bullet , gun and hunter before fire = 0 m/s

Using conservation of momentum

m v + M V = (m + M) V'

(0.0042) (539.62) + (72.5) V = (0.0042 + 72.5) (0)

V = - 0.031 m/s

so recoil velocity comes out to be 0.031 m/s




3 0
3 years ago
Traveler A starts from rest at a constant acceleration of 6 m/s^2. Two seconds later, traveler B starts with an initial velocity
Troyanec [42]

Answer:

3. 3.5 s

Explanation:

The position of traveller A is given by the equation:

x_A(t) = \frac{1}{2}a t^2

where

a = 6 m/s^2 is the acceleration of A

t is the time measured from when A started the motion

The position of traveller B instead is given by

x_B(t) = u_B (t-2) + \frac{1}{2}a(t-2)^2

where a (acceleration) is the same as traveller A, and

u_B = 20 m/s

is B's initial velocity. We can verify that the formula is correct by substituting t=2, and we get x_B=0, which means that B starts its motion 2 seconds later.

Traveller B overtakes traveller A when the two positions are the same, so:

x_A = x_B\\\frac{1}{2}at^2 = u_B (t-2) + \frac{1}{2}a(t-2)^2\\\frac{1}{2}at^2 = u_B t - 2u_B +\frac{1}{2}at^2 +2a-2at\\u_Bt-2at = 2u_B-2a\\t=\frac{2u_B-2a}{u_B-2a}=\frac{2(20)-2(6)}{20-2(6)}=3.5 s

4 0
3 years ago
What happens to the frequency and pitch of sound if the object making the sound moves away from you ?
Olin [163]

If you and the source of sound are moving apart, then the pitch (frequency) <em>you hear</em> is <em>lower</em> than the pitch (frequency) that's actually leaving the source.  

It doesn't matter whether you or the source is the one moving, only that the distance between you is increasing.

8 0
3 years ago
Explain about ohm's law.​
belka [17]

Answer:

Statement:

The electric current passing through a conductor is directly proportional to the potential difference across its ends provided temperature and other physical conditions remain constant.

Explanation:

Current is directly proportional to voltage loss through a resistor. That is, if the current doubles, then so does the voltage. To make a current flow through a resistance there must be a voltage across that resistance. Ohm's Law shows the relationship between the voltage (V), current (I) and resistance (R).

V∝I or I∝V⇒V=IR.

4 0
3 years ago
Read 2 more answers
A stuntwoman is going to attempt a jump across a canyon that is 77 m wide. The ramp on the far side of the canyon is 25 m lower
liq [111]

initial speed of the stuntman is given as

v = 28 m/s

angle of inclination is given as

\theta = 15 degree

now the components of the velocity is given as

v_x = 28 cos15 = 27.04 m/s

v_y = 28 sin15 = 7.25 m/s

here it is given that the ramp on the far side of the canyon is 25 m lower than the ramp from which she will leave.

So the displacement in vertical direction is given as

\delta y = -25 m

\delta y = v_y * t + \frac{1}{2} at^2

-25 = 7.25 * t - \frac{1}{2}*9.8* t^2

by solving above equation we have

t = 3.12 s

Now in the above interval of time the horizontal distance moved by it is given by

d_x = v_x * t

d_x = 27.04 * 3.12 = 84.4 m

since the canyon width is 77 m which is less than the horizontal distance covered by the stuntman so here we can say that stuntman will cross the canyon.

5 0
3 years ago
Other questions:
  • A vertical straight wire carrying an upward 24-A current exerts an attractive force per unit length of 88 X 104N/m on a second p
    7·1 answer
  • "Two waves of the same frequency have amplitudes 1.00 and 2.00. They interfere at a point where their phase difference is 60.0°.
    9·1 answer
  • PLEASE HELP ME Color corresponds to the ______________ of light waves. wave speed cycles wavelength
    13·1 answer
  • 5 Ohm 3 Ohm 2 Ohm R=?​
    6·1 answer
  • Use the drop-down menu to complete the statement. An electron in the first energy level of the electron cloud has an electron in
    12·2 answers
  • Could you help me with a science question really quick?
    13·1 answer
  • 4. You run from your house to a friend's house that is 3 miles away. You then walk
    12·1 answer
  • A scientist discovers a fossil of an animal and places it in the fossil record. The organism’s bones are similar to the bones of
    9·2 answers
  • The table below shows the average wind speeds of four hurricanes in Florida
    5·2 answers
  • I need help please will mark brainliest
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!