Answer:
Uniform rectilinear movement (m. r. u.)
Explanation:
It is a continuous movement without acceleration, that is, it moves at a constant speed. The speed does not change over time, for this reason, there is no change in acceleration.
Vf = final velocity = 50/30 [km/s] = 1.67 [km/s]
Vo = initial velocity = 50/30 [km/s] = 1.67 [km/s]
Answer:
The value of tangential acceleration
40 
The value of radial acceleration 
Explanation:
Angular acceleration = 50 
Radius of the disk = 0.8 m
Angular velocity = 10 
We know that tangential acceleration is given by the formula

Where r = radius of the disk
= angular acceleration
⇒
0.8 × 50
⇒
40 
This is the value of tangential acceleration.
Radial acceleration is given by

Where V = velocity of the disk = r 
⇒ V = 0.8 × 10
⇒ V = 8 
Radial acceleration


This is the value of radial acceleration.
Answer:
5.1*10^3 J/m^3
Explanation:
Using E = q/A*eo
And
q =75*10^-6 C
A = 0.25
eo = 8.85*10^-12
Energy density = 1/2*eo*(E^2) = 1/2*eo*(q/A*eo)^2 = [q^2] / [2*(A^2)*eo]
= [(75*10^-6)^2] / [2*(0.25)^2*8.85*10^-12]
= 5.1*10^3 J/m^3
I think everything looks good but 2 might not be right, it might be B
The car at 60 kph has 9 times more kinetic energy than the car traveling at 20 kph. This assumes that both cars have the same mass. Kinetic energy depends on the square of thee speed so if one car is going 3 times faster, its kinetic energy will be 3^2 ( = 9 ) greater. The car going at 60 kph will have 4 times the KE of the car going at 30 kph ( again assuming that the cars have the same mass.)