Answer:
The final position made with the vertical is 2.77 m.
Explanation:
Given;
initial velocity of the ball, V = 17 m/s
angle of projection, θ = 30⁰
time of motion, t = 1.3 s
The vertical component of the velocity is calculated as;

The final position made with the vertical (Yf) after 1.3 seconds is calculated as;

Therefore, the final position made with the vertical is 2.77 m.
Answer:
Velocity, v = 0.239 m/s
Explanation:
Given that,
The distance between two consecutive nodes of a standing wave is 20.9 cm = 0.209 m
The hand generating the pulses moves up and down through a complete cycle 2.57 times every 4.47 s.
For a standing wave, the distance between two consecutive nodes is equal to half of the wavelength.

Frequency is number of cycles per unit time.

Now we can find the velocity of the wave.
Velocity = frequency × wavelength
v = 0.574 × 0.418
v = 0.239 m/s
So, the velocity of the wave is 0.239 m/s.
Assuming that the can is motionless, we can then assume that the vertical component of T = mg and that Fe = the horizontal component of T.
<span> Since T itself is larger than it's vertical or horizontal components separately, then T is greater than all the forces.</span>
<h2>Answer:</h2><h2>The depth of barge float=
3 cm</h2><h2>
Explanation:</h2>
Length of rectangular barge=5.2 m
Width of rectangular barge=2.4m
Mass of crate=410 kg
Let h be the height of barge float
Volume of barge float=
Density of water=
Weight of water displaced by barge=Buoyant force=-Weight of horse



1 m=100 cm
cm
Hence, the depth of barge float=3 cm
<h2 />